期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effective and Robust Detection of Adversarial Examples via Benford-Fourier Coefficients
1
作者 Cheng-Cheng Ma Bao-Yuan Wu +2 位作者 yan-bo fan Yong Zhang Zhi-Feng Li 《Machine Intelligence Research》 EI CSCD 2023年第5期666-682,共17页
Adversarial example has been well known as a serious threat to deep neural networks(DNNs).In this work,we study the detection of adversarial examples based on the assumption that the output and internal responses of o... Adversarial example has been well known as a serious threat to deep neural networks(DNNs).In this work,we study the detection of adversarial examples based on the assumption that the output and internal responses of one DNN model for both adversarial and benign examples follow the generalized Gaussian distribution(GGD)but with different parameters(i.e.,shape factor,mean,and variance).GGD is a general distribution family that covers many popular distributions(e.g.,Laplacian,Gaussian,or uniform).Therefore,it is more likely to approximate the intrinsic distributions of internal responses than any specific distribution.Besides,since the shape factor is more robust to different databases rather than the other two parameters,we propose to construct discriminative features via the shape factor for adversarial detection,employing the magnitude of Benford-Fourier(MBF)coefficients,which can be easily estimated using responses.Finally,a support vector machine is trained as an adversarial detector leveraging the MBF features.Extensive experiments in terms of image classification demonstrate that the proposed detector is much more effective and robust in detecting adversarial examples of different crafting methods and sources compared to state-of-the-art adversarial detection methods. 展开更多
关键词 Adversarial defense adversarial detection generalized Gaussian distribution Benford-Fourier coefficients image classification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部