We reported on the generation of the dual-wavelength rectangular pulse in an erbium-doped fiber laser(EDFL)with a topological insulator saturable absorber.The rectangular pulse could be stably initiated with pulse wid...We reported on the generation of the dual-wavelength rectangular pulse in an erbium-doped fiber laser(EDFL)with a topological insulator saturable absorber.The rectangular pulse could be stably initiated with pulse width from 13.62 to 25.16 ns and fundamental repetition rate of 3.54 MHz by properly adjusting the pump power and the polarization state.In addition,we verified that the pulse shape of the dual-wavelength rectangular pulse can be affected by the total net cavity dispersion in the fiber laser.Furthermore,by properly rotating the polarization controllers,the harmonic mode-locking operation of the dual-wavelength rectangular pulse was also obtained.The dual-wavelength rectangular pulse EDFL would benefit some potential applications,such as spectroscopy,biomedicine,and sensing research.展开更多
基金supported by National Natural Science Foundation of China (No.612050346)the Shenzhen Municipal Science and Technology Plan (Nos.2010B090400306,JC201105160592A,and JCYJ 20120613150130014)
文摘We reported on the generation of the dual-wavelength rectangular pulse in an erbium-doped fiber laser(EDFL)with a topological insulator saturable absorber.The rectangular pulse could be stably initiated with pulse width from 13.62 to 25.16 ns and fundamental repetition rate of 3.54 MHz by properly adjusting the pump power and the polarization state.In addition,we verified that the pulse shape of the dual-wavelength rectangular pulse can be affected by the total net cavity dispersion in the fiber laser.Furthermore,by properly rotating the polarization controllers,the harmonic mode-locking operation of the dual-wavelength rectangular pulse was also obtained.The dual-wavelength rectangular pulse EDFL would benefit some potential applications,such as spectroscopy,biomedicine,and sensing research.