In this work,a conventional HfO_(2) gate dielectric layer is replaced with a 3-nm ferroelectric(Fe) HZO layer in the gate stacks of advanced fin field-effect transistors(FinFETs).Fe-induced characteristics,e.g.,negati...In this work,a conventional HfO_(2) gate dielectric layer is replaced with a 3-nm ferroelectric(Fe) HZO layer in the gate stacks of advanced fin field-effect transistors(FinFETs).Fe-induced characteristics,e.g.,negative drain induced barrier lowering(N-DIBL) and negative differential resistance(NDR),are clearly observed for both p-and n-type HZO-based FinFETs.These characteristics are attributed to the enhanced ferroelectricity of the 3-nm hafnium zirconium oxide(HZO) film,caused by Al doping from the TiAlC capping layer.This mechanism is verified for capacitors with structures similar to the FinFETs.Owing to the enhanced ferroelectricity and N-DIBL phenomenon,the drain current(I_(DS))of the HZO-FinFETs is greater than that of HfO_(2)-FinFETs and obtained at a lower operating voltage.Accordingly,circuits based on HZO-FinFET achieve higher performance than those based on HfO_(2)-FinFET at a low voltage drain(V_(DD)),which indicates the application feasibility of the HZO-FinFETs in the ultralow power integrated circuits.展开更多
基金financially supported by the Science and Technology Program of Beijing Municipal Science and Technology Commission (No.Z201100006820084)the National Natural Science Foundation of China (Nos.92064003,91964202 and 61904194)the Youth Innovation Promotion Association,Chinese Academy of Sciences under grant (Nos.2023130 and Y9YQ01R004)。
文摘In this work,a conventional HfO_(2) gate dielectric layer is replaced with a 3-nm ferroelectric(Fe) HZO layer in the gate stacks of advanced fin field-effect transistors(FinFETs).Fe-induced characteristics,e.g.,negative drain induced barrier lowering(N-DIBL) and negative differential resistance(NDR),are clearly observed for both p-and n-type HZO-based FinFETs.These characteristics are attributed to the enhanced ferroelectricity of the 3-nm hafnium zirconium oxide(HZO) film,caused by Al doping from the TiAlC capping layer.This mechanism is verified for capacitors with structures similar to the FinFETs.Owing to the enhanced ferroelectricity and N-DIBL phenomenon,the drain current(I_(DS))of the HZO-FinFETs is greater than that of HfO_(2)-FinFETs and obtained at a lower operating voltage.Accordingly,circuits based on HZO-FinFET achieve higher performance than those based on HfO_(2)-FinFET at a low voltage drain(V_(DD)),which indicates the application feasibility of the HZO-FinFETs in the ultralow power integrated circuits.