A new programmable prediction method is developed to refine the occultation band by taking into consideration the triaxiality of an occulting body, as well as two more factors, namely, the barycenter offset of an occu...A new programmable prediction method is developed to refine the occultation band by taking into consideration the triaxiality of an occulting body, as well as two more factors, namely, the barycenter offset of an occulting planet from the relevant planetary satellite system and the gravitational deflection of light rays due to an occulting planet. Although these factors can be neglected in most cases, it is shown that there are cases when these factors can cause a variation ranging from several tens to thousands of kilometers in the boundaries of occultation bands. Knowledge of analytic geometry simplifies the process of derivation and computation. This method is applied to long-term predictions of Jovian and Saturnian events.展开更多
HD 6840 is a double-lined visual binary with an orbital period of N7.5 years. By fitting the speckle interferometric measurements made by the 6 m BTA telescope and 3.5 m WIYN telescope, Balega et al. gave a preliminar...HD 6840 is a double-lined visual binary with an orbital period of N7.5 years. By fitting the speckle interferometric measurements made by the 6 m BTA telescope and 3.5 m WIYN telescope, Balega et al. gave a preliminary astrometric orbital solution of the system in 2006. Recently, Griffin derived a precise spectroscopic orbital solution from radial velocities observed with OPH and Cambridge Coravel. However, due to the low precision of the determined orbital inclination, the derived component masses are not satisfying. By adding the newly collected astrometric data in the Fourth Catalog of Interferometric Measurements of Binary Stars, we give a three-dimensional orbit solution with high precision and derive the preliminary physical parameters of HD 6840 via a simultaneous fit including both astrometric and radial velocity measurements.展开更多
For most hierarchical triple stars, the classical double two-body model of zeroth-order cannot describe the motions of the components under the current observational accuracy. In this paper, Marchal's first-order ana...For most hierarchical triple stars, the classical double two-body model of zeroth-order cannot describe the motions of the components under the current observational accuracy. In this paper, Marchal's first-order analytical solution is implemented and a more efficient simplified version is applied to real triple stars. The results show that, for most triple stars, the proposed first-order model is preferable to the zerothorder model both in fitting observational data and in predicting component positions.展开更多
Embedded clusters are ideal laboratories for understanding the early phase of the dynamical evolution of clusters as well as massive star formation. An interesting observational phenomenon is that some of the embedded...Embedded clusters are ideal laboratories for understanding the early phase of the dynamical evolution of clusters as well as massive star formation. An interesting observational phenomenon is that some of the embedded clusters show mass segregation, i.e., the most massive stars are preferentially found near the cluster center. We develop a new approach to describe mass segregation. Using this approach and the Two Micron All Sky Survey Point Source Catalog (2MASS PSC), we analyze 18 embedded clusters in the Galaxy. We find that 11 of them are mass-segregated and that the others are not mass-segregated. No inversely mass-segregated cluster is found.展开更多
基金supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 11178006, 11273066 and 11533004
文摘A new programmable prediction method is developed to refine the occultation band by taking into consideration the triaxiality of an occulting body, as well as two more factors, namely, the barycenter offset of an occulting planet from the relevant planetary satellite system and the gravitational deflection of light rays due to an occulting planet. Although these factors can be neglected in most cases, it is shown that there are cases when these factors can cause a variation ranging from several tens to thousands of kilometers in the boundaries of occultation bands. Knowledge of analytic geometry simplifies the process of derivation and computation. This method is applied to long-term predictions of Jovian and Saturnian events.
基金supported by the National Natural Science Foundation of China(Grant Nos.11073059,10833001,11178006,11273066 and 11203086)
文摘HD 6840 is a double-lined visual binary with an orbital period of N7.5 years. By fitting the speckle interferometric measurements made by the 6 m BTA telescope and 3.5 m WIYN telescope, Balega et al. gave a preliminary astrometric orbital solution of the system in 2006. Recently, Griffin derived a precise spectroscopic orbital solution from radial velocities observed with OPH and Cambridge Coravel. However, due to the low precision of the determined orbital inclination, the derived component masses are not satisfying. By adding the newly collected astrometric data in the Fourth Catalog of Interferometric Measurements of Binary Stars, we give a three-dimensional orbit solution with high precision and derive the preliminary physical parameters of HD 6840 via a simultaneous fit including both astrometric and radial velocity measurements.
基金supported by the National Natural Science Foundation of China under Grant Nos. 11178006 and 11203086
文摘For most hierarchical triple stars, the classical double two-body model of zeroth-order cannot describe the motions of the components under the current observational accuracy. In this paper, Marchal's first-order analytical solution is implemented and a more efficient simplified version is applied to real triple stars. The results show that, for most triple stars, the proposed first-order model is preferable to the zerothorder model both in fitting observational data and in predicting component positions.
基金project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technologyfunded by the National Aeronautics and Space Administration and the National Science Foundationsupported by the National Natural Science Foundation of China(Grant Nos.10873037,10921063,10733030 and 10833001)
文摘Embedded clusters are ideal laboratories for understanding the early phase of the dynamical evolution of clusters as well as massive star formation. An interesting observational phenomenon is that some of the embedded clusters show mass segregation, i.e., the most massive stars are preferentially found near the cluster center. We develop a new approach to describe mass segregation. Using this approach and the Two Micron All Sky Survey Point Source Catalog (2MASS PSC), we analyze 18 embedded clusters in the Galaxy. We find that 11 of them are mass-segregated and that the others are not mass-segregated. No inversely mass-segregated cluster is found.