期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Transactivating effect of complete S protein of hepatitis B virus and cloning of genes transactivated by complete S protein using suppression subtractive hybridization technique 被引量:6
1
作者 Gui-QinBai YanLiu +4 位作者 JunCheng Shu-LinZhang Ya-FeiYue yan-pinghuang Li-YingZhang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第25期3893-3898,共6页
AIM: To investigate the transactivating effect of complete S protein of hepatitis B virus (HBV) and to construct a subtractive cDNA library of genes transactivated by complete S protein of HBV by suppression subtracti... AIM: To investigate the transactivating effect of complete S protein of hepatitis B virus (HBV) and to construct a subtractive cDNA library of genes transactivated by complete S protein of HBV by suppression subtractive hybridization (SSH) technique and to clone genes associated with its transactivation activity, and to pave the way for elucidating the pathogenesis of hepatitis B virus infection. METHODS: pcDNA3.1(-)-complete S containing full-length HBV S gene was constructed by insertion of HBV complete S gene into BamH I/Kpn I sites. HepG2 cells were cotransfected with pcDNA3.1(-)-complete S and pSV-lacZ. After 48 h, cells were collected and detected for the expression of β-galactosidase (β-gal). Suppression subtractive hybridization and bioinformatics techniques were used. The mRNA of HepG2 cells transfected with pcDNA3.Incomplete S and pcDNA3.1(-) empty vector was isolated, and detected for the expression of complete S protein by reverse transcription polymerase chain reaction (RT-PCR) method, and cDNA was synthesized. After digestion with restriction enzyme RsaI, cDNA fragments were obtained. Tester cDNA was then divided into two groups and ligated to the specific adaptors 1 and 2, respectively. After tester cDNA had been hybridized with driver cDNA twice and underwent nested PCR twice, amplified cDNA fragments were subcloned into pGEM-Teasy vectors to set up the subtractive library. Amplification of the library was carried out within E. coli strain DH5α. The cDNA was sequenced and analyzed in GenBank with BLAST search after polymerase chain reaction (PCR) amplification. RESULTS: The complete S mRNA could be detected by RT-PCR in HepG2 cells transfected with the pcDNA3.1(-)-complete S. The activity of β-gal in HepG2 cells transfected with the pcDNA3.1(-)-complete s was 6.9 times higher than that of control plasmid. The subtractive library of genes transactivated by HBV complete S protein was constructed successfully. The amplified library contains 86 positive clones. Colony PCR showed that 86 clones contained DNA inserts of 200-1 000 bp, respectively. Sequence analysis was performed in 35 clones randomly, and the full length sequences were obtained with bioinformatics method and searched for homologous DNA sequence from GenBank, altogether 33 coding sequences were obtained. These cDNA sequences might be target genes transactivated by complete S protein of HBV. Moreover, two unknown genes were discovered, full length coding sequences were obtained by bioinformatics techniques, one of them was named complete S transactivated protein 1 (CSTP1) and registered in GenBank (AY553877). CONCLUSION: The complete S gene of HBV has a transactivating effect on SV40 early promoter. A subtractive cDNA library of genes transactivated by HBV complete S protein using SSH technique has been constructed successfully. The obtained sequences may be target genes transactivated by HBV complete S protein among which some genes coding proteins are involved in cell cycle regulation, metabolism, immunity, signal transduction, cell apoptosis and formation mechanism of hepatic carcinoma. 展开更多
关键词 Complete S protein Transactivated genes Hepatitis virus B
下载PDF
Screening of hepatocyte proteins binding to complete S protein of hepatitis B virus by yeast-two hybrid system 被引量:1
2
作者 Gui-QinBai JunCheng +4 位作者 Shu-LinZhang yan-pinghuang LinWang YanLiu Shu-MeiLin 《World Journal of Gastroenterology》 SCIE CAS CSCD 2005年第25期3899-3904,共6页
AIM: To investigate the biological function of complete S protein and to look for proteins interacting with complete S protein in hepatocytes. METHODS: We constructed bait plasmid expressing complete S protein of HBV ... AIM: To investigate the biological function of complete S protein and to look for proteins interacting with complete S protein in hepatocytes. METHODS: We constructed bait plasmid expressing complete S protein of HBV by cloning the gene of complete S protein into pGBKT7, then the recombinant plasmid DNA was transformed into yeast AH109 (a type). The transformed yeast AH109 was mated with yeast Y187 (α type) containing liver cDNA library plasmid in 2×YPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/-Trp-Leu-His-Ade) containing X-α-gal for selection and screening. After extracting and sequencing of plasmids from positive (blue) colonies, we underwent sequence analysis by bioinformatics. RESULTS: Nineteen colonies were selected and sequenced. Among them, five colonies were Homo sapiens solute carrier family 25, member 23 (SLC25A23), one was Homo sapiens calrer.iculin, one was human serum albumin (ALB) gene, one was Homo sapiens metallothionein 2A, two were Homo sapiens betaine-homocysteine methyltransferase, three were Homo sapiens Na+ and H+coupled amino acid transport system N, one was Homo sapiens CD81 antigen (target of anti-proliferative antibody 1) (CD81), three were Homo sapiens diazepam binding inhibitor, two colonies were new genes with unknown function. CONCLUSION: The yeast-two hybrid system is an effective method for identifying hepatocyte proteins interacting with complete S protein of HBV. The complete S protein may bind to different proteins i.e., its multiple functions in vivo. 展开更多
关键词 Complete S protein Yeast-two hybrid system Hepatitis B virus
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部