Porous carbon fibers are promising cathodes for zinc-ion hybrid supercapacitors(ZHSs)owing to their abundant active sites,great conductivity,and stable physical and chemical properties.However,designing a proper prepa...Porous carbon fibers are promising cathodes for zinc-ion hybrid supercapacitors(ZHSs)owing to their abundant active sites,great conductivity,and stable physical and chemical properties.However,designing a proper preparation technique to regulate the microstructure of carbon fibers still remains a great challenge.Here,a poly vinylpyrrolidone/po-lyacry lonitrile(PVP/PAN)-derived porous carbon fiber is developed via the PVP/PAN blend electrospinning and hydrothermal selective PVP removal strategy.The hydrothermal selective PVP removal strategy can effectively avoid a cross-linking between PVP and PAN during the traditional stabilization at air atmosphere.In PVP/PAN-derived porous carbon fiber,the sufficient micropores provide abundant space for the Zn^(2+)storage,whereas the proper mesopores contribute to the fast ion transfer.These hierarchical porous structures endow ZHSs with high specific capacity and high-rate performance.The ZHS assembled with the optimal PVP/PAN-derived porous carbon fiber(PVP-PANC-0.8)displays an outstanding specific capacity of 208 mAh·g^(-1),high rate capability(49.5%)from 0.5 to 5 A·g^(-1),and 72.25%capacity retention after 10,000 cycles at 0.5 A·g^(-1).展开更多
基金financially supported by Shandong Provincial Natural Science Foundation(No.ZR2022ME181)National Natural Science Foundation of China(No.51702123)+1 种基金University of Jinan Science and Technology Planning Project(No.XKY2034)the Education Bureau of Jinan,China(Grant No.JNSX2023015)。
文摘Porous carbon fibers are promising cathodes for zinc-ion hybrid supercapacitors(ZHSs)owing to their abundant active sites,great conductivity,and stable physical and chemical properties.However,designing a proper preparation technique to regulate the microstructure of carbon fibers still remains a great challenge.Here,a poly vinylpyrrolidone/po-lyacry lonitrile(PVP/PAN)-derived porous carbon fiber is developed via the PVP/PAN blend electrospinning and hydrothermal selective PVP removal strategy.The hydrothermal selective PVP removal strategy can effectively avoid a cross-linking between PVP and PAN during the traditional stabilization at air atmosphere.In PVP/PAN-derived porous carbon fiber,the sufficient micropores provide abundant space for the Zn^(2+)storage,whereas the proper mesopores contribute to the fast ion transfer.These hierarchical porous structures endow ZHSs with high specific capacity and high-rate performance.The ZHS assembled with the optimal PVP/PAN-derived porous carbon fiber(PVP-PANC-0.8)displays an outstanding specific capacity of 208 mAh·g^(-1),high rate capability(49.5%)from 0.5 to 5 A·g^(-1),and 72.25%capacity retention after 10,000 cycles at 0.5 A·g^(-1).