期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Real-time K-TIG welding penetration prediction on embedded system using a segmentation-LSTM model 被引量:1
1
作者 Yong-Hua Shi Zi-Shun Wang +3 位作者 Xi-Yin Chen yan-xin cui Tao Xu Jin-Yi Wang 《Advances in Manufacturing》 SCIE EI CAS CSCD 2023年第3期444-461,共18页
Keyhole tungsten inert gas(K-TIG)welding is capable of realizing single-sided welding and double-sided forming and has been widely used in medium and thick plate welding.In order to improve the accuracy of automatic w... Keyhole tungsten inert gas(K-TIG)welding is capable of realizing single-sided welding and double-sided forming and has been widely used in medium and thick plate welding.In order to improve the accuracy of automatic weld identification and weld penetration prediction of robot in the process of large workpiece welding,a two-stage model is proposed in this paper,which can monitor the K-TIG welding penetration state in real time on the embedded system,called segmentation-LSTM model.The proposed system extracts 9 weld pool geometric features with segmentation network,and then extracts the weld gap using a traditional algorithm.Then these 10-dimensional features are input into the LSTM model to predict the penetration state,including under penetration,partial penetration,good penetration and over penetration.The recognition accuracy of the proposed system can reach 95.2%.In this system,to solve the difficulty of labeling data and lack of segmentation accuracy,an improved LabelMe capable of live-wire annotation tool and a novel loss function were proposed,respectively.The latter was also called focal dice loss,which enabled the network to achieve a performance of 0.933 mloU on the testing set.Finally,an improved slimming strategy compresses the network,making the segmentation network achieve real-time on the embedded system(RK3399pro). 展开更多
关键词 Keyhole tungsten inert gas(K-TIG)welding Penetration state prediction Segmentation-LSTM model Embedded system Focal dice loss Improved LabelMe
原文传递
Investigation into keyhole-weld pool dynamic behaviors based on HDR vision sensing of real-time K-TIG welding process through a steel/glass sandwich 被引量:1
2
作者 yan-xin cui Yong-Hua Shi +2 位作者 Qiang Ning Yun-Ke Chen Bao-Ri Zhang 《Advances in Manufacturing》 SCIE EI CAS CSCD 2021年第1期136-144,共9页
To obtain a deep insight into keyhole tungsten inert gas welding,it is necessary to observe the dynamic behavior of the weld pool and keyhole.In this study,based on the steel/glass sandwich and high dynamic range came... To obtain a deep insight into keyhole tungsten inert gas welding,it is necessary to observe the dynamic behavior of the weld pool and keyhole.In this study,based on the steel/glass sandwich and high dynamic range camera,a vision system is developed and the keyhole-weld pool profiles are captured during the real-time welding process.Then,to analyze the dynamic behavior of the weld pool and keyhole,an image processing algorithm is proposed to extract the compression depth of the weld pool and the geometric parameters of the keyhole from the captured images.After considering the variations of these parameters over time,it was found that the front and rear lengths of the keyhole were dynamically adjusted internally and had opposite trends according to the real-time welding status while the length of the keyhole was in a quasi-steady state.The proposed vision-based observation method lays a solid foundation for studying the weld forming process and improving keyhole tungsten inert gas welding. 展开更多
关键词 Keyhole tungsten inert gas(K-TIG)welding Vision-based investigation Dynamic keyhole profile Dynamic weld pool profile
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部