In this paper, we propose a novel method for finger-vein recognition. We extract the features of the vein patterns for recognition. Then, the minutiae features included bifurcation points and ending points are extract...In this paper, we propose a novel method for finger-vein recognition. We extract the features of the vein patterns for recognition. Then, the minutiae features included bifurcation points and ending points are extracted from these vein patterns. These feature points are used as a geometric representation of the vein patterns shape. Finally, the modified Hausdorff distance algorithm is provided to evaluate the identifica-tion ability among all possible relative positions of the vein patterns shape. This algorithm has been widely used for comparing point sets or edge maps since it does not require point cor-respondence. Experimental results show these minutiae feature points can be used to perform personal verification tasks as a geometric rep-resentation of the vein patterns shape. Fur-thermore, in this developed method. we can achieve robust image matching under different lighting conditions.展开更多
文摘In this paper, we propose a novel method for finger-vein recognition. We extract the features of the vein patterns for recognition. Then, the minutiae features included bifurcation points and ending points are extracted from these vein patterns. These feature points are used as a geometric representation of the vein patterns shape. Finally, the modified Hausdorff distance algorithm is provided to evaluate the identifica-tion ability among all possible relative positions of the vein patterns shape. This algorithm has been widely used for comparing point sets or edge maps since it does not require point cor-respondence. Experimental results show these minutiae feature points can be used to perform personal verification tasks as a geometric rep-resentation of the vein patterns shape. Fur-thermore, in this developed method. we can achieve robust image matching under different lighting conditions.