BACKGROUND:Hyperbaric oxygen(HBO)is an effective adjuvant therapy for ischemiareperfusion(I/R)injury of the brain,small intestine and testis in addition to crushing injury.Studies have shown that HBO increases the act...BACKGROUND:Hyperbaric oxygen(HBO)is an effective adjuvant therapy for ischemiareperfusion(I/R)injury of the brain,small intestine and testis in addition to crushing injury.Studies have shown that HBO increases the activity of villi of the ileum 30 minutes after I/R injury.The present study aimed to observe the effect of HBO on apoptosis of epithelial cells in the small intestine during different periods of I/R and to elucidate the potential mechanisms.METHODS:Rats were subjected to 60-minute ischemia by clamping the superior mesenteric artery and 60-minute reperfusion by removal of clamping.The rats were randomly divided into four groups:I/R group,HBO precondition or HBO treatment before ischemia(HBO-P),HBO treatment during ischemia period(HBO-I),and HBO treatment during reperfusion(HBO-R).After 60-minute reperfusion,samples of the small intestine were prepared to measure the level of ATP by using the colorimetric method and immunochemical expression of caspase-3.The levels of TNF-αin intestinal tissue were measured using the enzyme-linked immunosorbent assay method(Elisa).RESULTS:TNF-αlevels were significantly lower in the HBO-I group than in the HBO-P(P<0.05),HBO-R and I/R groups;there was no significant difference between the HBO-R and I/R groups(P>0.05).The expression of caspas-3 was significantly lower in the HBO-I group than in the HBO-P group(P<0.05);it was also significantly lower in the HBO-P group than in the I/R and HBO-R groups(P<0.05).ATP level was significantly lower in the HBO-I group than in the HBO-P group(P<0.05),and also it was significantly lower in the HBO-P group than in the I/R and HBO-R groups(P<0.05).CONCLUSIONS:There is an association between HBO,small intestinal I/R injury,and mucosa apoptosis.HBO maintains ATP and aerobic metabolism,inhibites TNF-αproduction,and thus prevents intestinal mucosa from apoptosis.Best results can be obtained when HBO is administered to patients in the period of ischemia,and no side effects are produced when HBO is given during the Period of Reperfusion.展开更多
Zinc telluride/reduced graphene oxide (ZnTe/RGO) nanocomposites are synthesized by a one-pot, facile, solvothermal process using hydrazine hydrate as the reducing agent. Hydrazine hydrate not only promoted the forma...Zinc telluride/reduced graphene oxide (ZnTe/RGO) nanocomposites are synthesized by a one-pot, facile, solvothermal process using hydrazine hydrate as the reducing agent. Hydrazine hydrate not only promoted the formation ofZnTe nanoparticles but also reduced GO to RGO. The formation of ZnTe/RGO is demonstrated by different techniques. In addition, the experimental results suggest a possible formation mechanism of these nanocomposites. Finally, due to the transfer of the photo-generated electrons between ZnTe and RGO resulting in low electrons/holes recombination, the as-prepared nanocomposites of ZnTe/RGO exhibited strongly enhanced photocatalytic activity for the bleaching of methyl blue (MB) dye under visible light irradiation.展开更多
文摘BACKGROUND:Hyperbaric oxygen(HBO)is an effective adjuvant therapy for ischemiareperfusion(I/R)injury of the brain,small intestine and testis in addition to crushing injury.Studies have shown that HBO increases the activity of villi of the ileum 30 minutes after I/R injury.The present study aimed to observe the effect of HBO on apoptosis of epithelial cells in the small intestine during different periods of I/R and to elucidate the potential mechanisms.METHODS:Rats were subjected to 60-minute ischemia by clamping the superior mesenteric artery and 60-minute reperfusion by removal of clamping.The rats were randomly divided into four groups:I/R group,HBO precondition or HBO treatment before ischemia(HBO-P),HBO treatment during ischemia period(HBO-I),and HBO treatment during reperfusion(HBO-R).After 60-minute reperfusion,samples of the small intestine were prepared to measure the level of ATP by using the colorimetric method and immunochemical expression of caspase-3.The levels of TNF-αin intestinal tissue were measured using the enzyme-linked immunosorbent assay method(Elisa).RESULTS:TNF-αlevels were significantly lower in the HBO-I group than in the HBO-P(P<0.05),HBO-R and I/R groups;there was no significant difference between the HBO-R and I/R groups(P>0.05).The expression of caspas-3 was significantly lower in the HBO-I group than in the HBO-P group(P<0.05);it was also significantly lower in the HBO-P group than in the I/R and HBO-R groups(P<0.05).ATP level was significantly lower in the HBO-I group than in the HBO-P group(P<0.05),and also it was significantly lower in the HBO-P group than in the I/R and HBO-R groups(P<0.05).CONCLUSIONS:There is an association between HBO,small intestinal I/R injury,and mucosa apoptosis.HBO maintains ATP and aerobic metabolism,inhibites TNF-αproduction,and thus prevents intestinal mucosa from apoptosis.Best results can be obtained when HBO is administered to patients in the period of ischemia,and no side effects are produced when HBO is given during the Period of Reperfusion.
基金financially supported by the National Natural Science Foundation of China (Nos. 11164026, 51172193, 11504313, 51362026)the Natural Science Foundation for Distinguished Young Scholars of Xinjiang (No. 2013711007)
文摘Zinc telluride/reduced graphene oxide (ZnTe/RGO) nanocomposites are synthesized by a one-pot, facile, solvothermal process using hydrazine hydrate as the reducing agent. Hydrazine hydrate not only promoted the formation ofZnTe nanoparticles but also reduced GO to RGO. The formation of ZnTe/RGO is demonstrated by different techniques. In addition, the experimental results suggest a possible formation mechanism of these nanocomposites. Finally, due to the transfer of the photo-generated electrons between ZnTe and RGO resulting in low electrons/holes recombination, the as-prepared nanocomposites of ZnTe/RGO exhibited strongly enhanced photocatalytic activity for the bleaching of methyl blue (MB) dye under visible light irradiation.