期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Electromotive Force for Solid Oxide Fuel Cells Using Biomass Produced Gas as Fuel 被引量:2
1
作者 Wei Zhu yan-hong yin +2 位作者 Cen Gao Chang-rong Xia Guang-yao Meng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第4期325-328,共4页
The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis... The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis. Tour program also predicts the concentration of oxygen in the fuel chamber as well as the concentration of equilibrium species such as H2, CO, CO2 and CH4. Compared with using hydrogen as a fuel, the e.m.f. for cells using BPG as the fuels is relative low and strongly influenced by carbon deposition. To remove carbon deposition, the optimum amount of H2O to add is determined at various operating temperatures. Further the e.m.f, for cells based on yttria stabilized zirconia and doped ceria as electrolytes are compared. The study reveals that when using BPG as fuel, the depression of e.m.f, for a SOFC using doped ceria as electrolyte is relatively small when compared with that using Yttria stabilized zirconia. 展开更多
关键词 Biomass produced gas Electromotive force Solid oxide fuel cells Thermodynamic equilibrium
下载PDF
Preparation of WO_(3) nanorods with high specific surface area using double-walled carbon nanotubes as template 被引量:1
2
作者 yan-hong yin Chun-An Ma +2 位作者 Zi-Ping Wu Li-Tao Chen You-Qun Chu 《Rare Metals》 SCIE EI CAS CSCD 2022年第3期1051-1056,共6页
The preparation of WO_(3) nanorods by double-walled carbon nanotube(DWCNT)template was investi-gated in this study.Owing to that the prepared H_(2)WO_(4)can be isolated by the homogenously dispersed DWCNT bun-dles and... The preparation of WO_(3) nanorods by double-walled carbon nanotube(DWCNT)template was investi-gated in this study.Owing to that the prepared H_(2)WO_(4)can be isolated by the homogenously dispersed DWCNT bun-dles and secondary accumulation can be avoided effec-tively,the growth of H_(2)WO_(4) can be restrained,and H_(2)WO_(4) nanorods with diameter of 10–50 nm can be prepared.After calcination of the prepared DWCNT/H_(2)WO_(4) com-posite in oxygen,WO_(3) nanorods with diameter of 10–100 nm and high specific surface area of 16.4 m^(2)·g^(-1) can be obtained.It is concluded that the DWCNTs play an im-portant role in the effective mediation of the morphology and size of nano-WO_(3). 展开更多
关键词 Tungsten oxide NANORODS Double-walled carbon nanotubes TEMPLATE
原文传递
Modified tungsten oxide as a binder-free anode in lithium-ion battery for improving electrochemical stability 被引量:1
3
作者 Jia-Bin Hou Ke Zhang +8 位作者 Jin-Hua Xiao Zi-Qi Xu Wen-Jing Gao Xin-Yi Gao Si-Ke Zhou Ze-Zhou Jiao Meng-Ru Yi yan-hong yin Zi-Ping Wu 《Tungsten》 EI 2022年第4期356-369,共14页
As the anode active substance of lithium ions battery(LIB),the low conductivity/ion diffusivity and large volume changes of tungsten oxide(WO_(3))lead to its serious polarization during the lithiation/delithiation pro... As the anode active substance of lithium ions battery(LIB),the low conductivity/ion diffusivity and large volume changes of tungsten oxide(WO_(3))lead to its serious polarization during the lithiation/delithiation process,decreasing the cycling stability.To address these challenges,a binder-free anode consisting of nitrogen-doped tungsten oxide nanosheets,encapsulated in carbon layers(N-doped WO_(3)@CL)and entangled with carbon nanotubes macro-films(CMF),was successfully synthesized through a combination of hydrothermal and online assembly method.Compared with the pristine tungsten oxide entangled with carbon nanotubes macro-films(WO_(3)@CMF),the synthesized N-doped WO_(3)@CL@CMF as a binder-free LIB anode demonstrated better electrochemical performance,which could be attributed to(1)surface defects of WO_(3)created by N dopant providing more channels to improve Li^(+)diffusion,(2)the N-doped WO_(3)@CL with a flower-like structure shortening the diffusion length of Li^(+)ions and further leading to high Li^(+)incorporation,and(3)carbon layers and carbon nanotubes synergistically alleviating the large volume change of the N-doped WO_(3)@CL@CMF electrode during the charging and discharging process.The present study offers insights into employing nitrogen dopant and a carbon matrix to mediate the conductivity and wrapped structure in the WO_(3)semiconductor powder,which provides an important strategy for large-scale design of the binder-free LIB anode with high performance. 展开更多
关键词 Tungsten oxide NITROGEN-DOPED Carbon layers Carbon nanotubes Binder-free anode
原文传递
Preparation of homogeneously dispersed and highly concentrated double-walled carbon nanotubes as catalyst support
4
作者 Ming-Mao Li Zi-Ping Wu +3 位作者 Man Zhao Wei-Bo Zhang ying-Yan Hu yan-hong yin 《Rare Metals》 SCIE EI CAS CSCD 2016年第4期337-343,共7页
In this study, double-walled carbon nanotubes (DWCNTs) in ethylene glycol (EG) and N,N-dimethyl- formamide (DMF) media were investigated by a simple ultrasonication method. Homogeneously dispersed and highly con... In this study, double-walled carbon nanotubes (DWCNTs) in ethylene glycol (EG) and N,N-dimethyl- formamide (DMF) media were investigated by a simple ultrasonication method. Homogeneously dispersed and highly concentrated DWCNTs are in EG (95 vol%) and DMF (5 vol%) media without the addition of surfactant. Surface structure and crystallinity of DWCNTs undergo minimal change. The highly concentrated dispersion state of DWCNTs helps in Pt loading. Pt particles prepared in the homogenous dispersion system have small sizes and are uniformly distributed. The prepared Pt catalysts display a similar electrochemical activity to catalysts pre- pared in EG system with low concentration. The results demonstrate that homogenously dispersed and highly concentrated DWCNTs can realize mass production of Pt/ DWCNT catalysts with high electrochemical activity and low cost. 展开更多
关键词 Double-walled carbon nanotubes Catalystsupport Pt/DWCNT catalysts Ultrasonication
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部