Developing highly active and durable electrocatalysts for the oxygen reduction reaction (ORR) is crucial to large-scale commercialization of fuel cells and metal-air batteries. Here we report a facile approach for t...Developing highly active and durable electrocatalysts for the oxygen reduction reaction (ORR) is crucial to large-scale commercialization of fuel cells and metal-air batteries. Here we report a facile approach for the synthesis of nitrogen and oxygen dual-doped meso-porous layer-structured carbon electrocatalyst embedded with graphitic carbon coated cobalt nanoparticles by direct pyrolysis of a layer-structured metal-organic framework. The elec- trocatalyst prepared at 800℃ exhibits comparable ORR performance to Pt/C catalysts but possesses superior stability to Pt/C catalysts. This synthetic approach provides new prospects in developing sustainable carbon-based electrocatalysts for electrochemical energy conversion devices.展开更多
文摘Developing highly active and durable electrocatalysts for the oxygen reduction reaction (ORR) is crucial to large-scale commercialization of fuel cells and metal-air batteries. Here we report a facile approach for the synthesis of nitrogen and oxygen dual-doped meso-porous layer-structured carbon electrocatalyst embedded with graphitic carbon coated cobalt nanoparticles by direct pyrolysis of a layer-structured metal-organic framework. The elec- trocatalyst prepared at 800℃ exhibits comparable ORR performance to Pt/C catalysts but possesses superior stability to Pt/C catalysts. This synthetic approach provides new prospects in developing sustainable carbon-based electrocatalysts for electrochemical energy conversion devices.