This paper discusses the developement and investigation of a silica microbubble resonator(MBR) that is optimized to cancel mode dispersion with material dispersion, at a wavelength of approximately 1550 nm and maintai...This paper discusses the developement and investigation of a silica microbubble resonator(MBR) that is optimized to cancel mode dispersion with material dispersion, at a wavelength of approximately 1550 nm and maintain a quality factor of an optical mode as large as 5.4 × 10~7. Benefitting from the near-zero dispersion and high quality factor, a primary optical comb is generated in the MBR using cascaded four-wave mixing processes, which span over 300 nm with several tens of teeth. Furthermore, the frequency comb could be gradually tuned by mechanically stretching the MBR. This tunable Kerr comb has multiple potential applications in precision measurements and sensing applications, such as molecular spectroscopy and ranging.展开更多
基金supported by the National Key R&D Program of China(Grant No.2016YFA0301303)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY130200)+2 种基金the National Natural Science Foundation of China(Grant Nos.11934012,61575184,and 11722436)the Fundamental Research Funds for the Central Universitiesthe Key Science and Technology Program of Henan Province,China(Grant No.182102410070)。
文摘This paper discusses the developement and investigation of a silica microbubble resonator(MBR) that is optimized to cancel mode dispersion with material dispersion, at a wavelength of approximately 1550 nm and maintain a quality factor of an optical mode as large as 5.4 × 10~7. Benefitting from the near-zero dispersion and high quality factor, a primary optical comb is generated in the MBR using cascaded four-wave mixing processes, which span over 300 nm with several tens of teeth. Furthermore, the frequency comb could be gradually tuned by mechanically stretching the MBR. This tunable Kerr comb has multiple potential applications in precision measurements and sensing applications, such as molecular spectroscopy and ranging.