A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether...A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group 〉 chemically extracted acellular nerve graft + ciliary neurotrophic factor group 〉 chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone.展开更多
In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bo...In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchyrnal stem cells group. Results showed that at 8 weeks after bridging, sciatic functional index, triceps wet weight recovery rate, myelin thickness, and number of myelinated nerve fibers were significantly changed in the three groups. Variations were the largest in the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group compared with the other two groups. Experimental findings suggest that chemically extracted acellular nerve allograft combined nerve factor and mesenchymal stem cells can promote the restoration of sciatic nerve defects. The repair effect seen is better than the single application of acellular nerve allograft or acellular nerve allograft combined mesenchymal stem cell transplantation.展开更多
A new method for the preparation of aminated lignin (AEL) through etherification and amination reaction was presented. Chlorine atoms were ?rstly introduced into lignin through its etheri?cation with epichlo...A new method for the preparation of aminated lignin (AEL) through etherification and amination reaction was presented. Chlorine atoms were ?rstly introduced into lignin through its etheri?cation with epichlorohydrin. Then, hydrophilic amine groups were grafted to the modi?ed lignin structure through amination with ethylenediamine to obtain AEL. Subsequent acidi?cation of AEL led to the ionized aminated lignin (IAEL). The results of our analyses showed that the nitrogen content of AEL was 6.9%. Foaming and emulsifying experiments indicated that AEL had better foamability and emulsifying properties than IAEL. Surface tension tests showed that AEL and IAEL had similar critical micelle concentration (CMC). However, IAEL had lower surface tension (36.33 mN/m) than AEL (42.89 mN/m) at CMC. These results demonstrate the promising applicability of AEL as an emulsi?er and that of IAEL as feedstock in the production of detergent and dispersant.展开更多
The unique properties of carbon quantum dots (CQDs) make them promising materials in many ?elds. Herein, we present a facile method for the preparation of photo-luminescent CQDs using humins as the carbon precursor...The unique properties of carbon quantum dots (CQDs) make them promising materials in many ?elds. Herein, we present a facile method for the preparation of photo-luminescent CQDs using humins as the carbon precursor for the purpose of providing a high value-added solution for this “biomass conversion process waste”. The structure of the CQDs was analyzed, and the effects of reaction temperature and time on the CQDs’ ?uorescence were investigated. The results showed that humins were effectively carbonized during the reaction. The ?uorescence intensity of humin-based CQDs initially increased with reaction temperature and time, and subsequently decreased beyond 200℃ and 4 h. Polyaromatic structures and hydrophilic groups such as O-H, C-O, -COOH and C==O groups exist in the CQDs. The humin-based CQDs have the dimension of 3~7 nm with an average size of about 5.5 nm. The highest emission intensity of blue/cyan ?uorescence light at 440 nm is achieved on the excitation with UV light at the wavelength of 330 nm.展开更多
Light-absorbing carbonaceous aerosols including black carbon(BC) and brown carbon(BrC)play significant roles in atmospheric radiative properties. One-year measurements of aerosol light absorption at multi-wavelength w...Light-absorbing carbonaceous aerosols including black carbon(BC) and brown carbon(BrC)play significant roles in atmospheric radiative properties. One-year measurements of aerosol light absorption at multi-wavelength were continuously conducted in Xiamen,southeast of China in 2014 to determine the light absorption properties including absorption coefficients(σabs) and absorption ?ngstr?m exponent(AAE) in the coastal city.Light absorptions of BC and BrC with their contributions to total light absorption were further quantified. Mean σabsat 370 nm and 880 nm were 56.6 ± 34.3 and 16.5 ± 11.2 Mm-1,respectively. σabspresented a double-peaks diurnal pattern with the maximum in the morning and the minimum in the afternoon. σabswas low in warm seasons and high in cold seasons. AAE ranged from 0.26 to 2.58 with the annual mean of 1.46, implying that both fossil fuel combustion and biomass burning influenced aerosol optical properties. σabsof BrC at 370 nm was 24.0 ± 5.7 Mm-1, contributing 42% to the total absorption. The highest AAE(1.52 ± 0.02) and largest BrC contributions(47% ± 4%) in winter suggested the significant influence of biomass burning on aerosol light absorption. Long-distance air masses passing through North China Plain and the Yangtze River Delta led to high AAE and BrC contributions. High AAE value of 1.46 in July indicated that long-range transport of the air pollutants from intense biomass burning in Southeast Asia would affect aerosol light absorption in Southeast China. The study will improve the understanding of light absorption properties of aerosols and the optical impacts of BrC in China.展开更多
It is challenging for antibacterial polymer scaffolds to achieve the drug sustained-release through directly coating or blending.In this work,halloysite nanotubes(HNTs),a natural aluminosilicate nanotube,were utilized...It is challenging for antibacterial polymer scaffolds to achieve the drug sustained-release through directly coating or blending.In this work,halloysite nanotubes(HNTs),a natural aluminosilicate nanotube,were utilized as a nano container to load nano silver(Ag)into the lumen through vacuum negativepressure suction&injection and thermal decomposition of silver acetate.Then,the nano Ag loaded HNTs(HNTs@Ag)were introduced to poly-l-lactic acidide)(PLLA)scaffolds prepared by additive manufacturing for the sustained-release of Ag^+.Acting like a’shield’,the tube walls of HNTs not only retarded the erosion of external aqueous solution on internal nano Ag to generate Ag^+but also postponed the generated Ag^+to diffuse outward.The results indicated the PLLA-HNTs@Ag nanocomposite scaffolds achieved a sustained-release of Ag^+over 28 days without obvious initial burst release.Moreover,the scaffolds exhibited a long-lasting antibacterial property without compromising the cytocompatibility.Besides,the degradation properties,biomineralization ability and mechanical properties of the scaffolds were increased.This study suggests the potential application of inorganic nanotubes as drug carrier for the sustained-release of functional polymer nanocomposite scaffolds.展开更多
The development of bifunctional catalysts has drawn much attention in realizing efficient and feasible catalytic systems to meet the diverse dema nd of pote ntial industrial applications.Desig n of stable and powerful...The development of bifunctional catalysts has drawn much attention in realizing efficient and feasible catalytic systems to meet the diverse dema nd of pote ntial industrial applications.Desig n of stable and powerful bifun ctional catalysts for various catalysis systems is highly desirable yet largely unmet.Here,three kinds of decavanadate-based transition metal hybrids(DTMH)(i.e.,Co-DTMH,Ni-DTMH and Ag-DTMH)have been successfully synthesized through a pH tuning strategy and further characterized.Specifically,the rare M05N six-coordinated transition metal coordination modes have been detected in Co-DTMH and Ni-DTMH,while Ag atoms in Ag-DTMH exhibited three-and five-coordinated geometries with the tuning of specially selected imidazole ligands.Thus-obtained clusters can serve as powerful bifunctional catalysts for both sulfide oxidation and C-C bond construction.Remarkably,Ag-DTMH dem on st rated excellent heteroge ne ous bifunctional catalytic properties in the selective oxidati on of sulfides and construction of C-C bond(yields up to 99%),which enable successful recycling for three cycles with remained catalytic activities and structure stability.The newly designed decavanadate-based transition metal hybrids with bifunctional property hold high promise in the practical applications like continuous catalysis or flow bed reactions.展开更多
Nowadays,cloud computing has been identified as new opportunities for migrating to the expected agility,reuse,and adaptive capabilities that can support the ever changing IT trends and requirements.Unfortunately,the r...Nowadays,cloud computing has been identified as new opportunities for migrating to the expected agility,reuse,and adaptive capabilities that can support the ever changing IT trends and requirements.Unfortunately,the rapid evolution of those technologies also comes with open issues such as security,privacy,integrity,quality of services,and their possible detrimental consequences.In this work,the concept of insurance is introduced to compensate the cloud computing customers when encountering those failures if service providers(SPs)have insurance purchased.Particularly,we consider the situation when the insurer is unable to see the system failure risk levels of the SPs,which is usually seen as an incomplete information market,in contrast with the optimal situation in a complete information market.First,an insurance-based cloud computing architecture is proposed to build a monetary credit system in which the cloud computing SP pays a premium for a certain coverage to the insurer.Subsequently,problem is formulated to solve the optimal insurance plan in complete and incomplete information markets,together with detail analysis of insurance policies in both cases are provided.Furthermore,simulation results show the properties of the two insurance plans and parameters that affect the design of the insurance plan.展开更多
文摘A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group 〉 chemically extracted acellular nerve graft + ciliary neurotrophic factor group 〉 chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone.
文摘In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchyrnal stem cells group. Results showed that at 8 weeks after bridging, sciatic functional index, triceps wet weight recovery rate, myelin thickness, and number of myelinated nerve fibers were significantly changed in the three groups. Variations were the largest in the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group compared with the other two groups. Experimental findings suggest that chemically extracted acellular nerve allograft combined nerve factor and mesenchymal stem cells can promote the restoration of sciatic nerve defects. The repair effect seen is better than the single application of acellular nerve allograft or acellular nerve allograft combined mesenchymal stem cell transplantation.
基金supported by the Research Project for Hot Tracking Items of Beijing Forestry University(2017BLRD03)the National Natural Science Foundation of China(51603012)+1 种基金the Special Science and Technology Research Program of Beijing Forestry University(2016KJ02)the Fundamental Research Funds for the Central Universities(BLYJ2016-17,BLX2015-06)
文摘A new method for the preparation of aminated lignin (AEL) through etherification and amination reaction was presented. Chlorine atoms were ?rstly introduced into lignin through its etheri?cation with epichlorohydrin. Then, hydrophilic amine groups were grafted to the modi?ed lignin structure through amination with ethylenediamine to obtain AEL. Subsequent acidi?cation of AEL led to the ionized aminated lignin (IAEL). The results of our analyses showed that the nitrogen content of AEL was 6.9%. Foaming and emulsifying experiments indicated that AEL had better foamability and emulsifying properties than IAEL. Surface tension tests showed that AEL and IAEL had similar critical micelle concentration (CMC). However, IAEL had lower surface tension (36.33 mN/m) than AEL (42.89 mN/m) at CMC. These results demonstrate the promising applicability of AEL as an emulsi?er and that of IAEL as feedstock in the production of detergent and dispersant.
基金supported by the Research Project for Hot Tracking Items of Beijing Forestry University(2017BLRD03)the National Natural Science Foundation of China(51603012)Beijing Municipal Natural Science Foundation(6182031)
文摘The unique properties of carbon quantum dots (CQDs) make them promising materials in many ?elds. Herein, we present a facile method for the preparation of photo-luminescent CQDs using humins as the carbon precursor for the purpose of providing a high value-added solution for this “biomass conversion process waste”. The structure of the CQDs was analyzed, and the effects of reaction temperature and time on the CQDs’ ?uorescence were investigated. The results showed that humins were effectively carbonized during the reaction. The ?uorescence intensity of humin-based CQDs initially increased with reaction temperature and time, and subsequently decreased beyond 200℃ and 4 h. Polyaromatic structures and hydrophilic groups such as O-H, C-O, -COOH and C==O groups exist in the CQDs. The humin-based CQDs have the dimension of 3~7 nm with an average size of about 5.5 nm. The highest emission intensity of blue/cyan ?uorescence light at 440 nm is achieved on the excitation with UV light at the wavelength of 330 nm.
基金supported by the National Natural Science Foundation of China (Nos. 21607148, U1405235, 41575146, 21507127)the National Key R&D Program of China (No. 2016YFC0200500)+2 种基金the Fujian Natural Science Foundation (2017J01082)Youth Innovation Promotion Association CAS (No. 2016279)the Chinese Academy of Sciences Interdisciplinary Innovation Team Project
文摘Light-absorbing carbonaceous aerosols including black carbon(BC) and brown carbon(BrC)play significant roles in atmospheric radiative properties. One-year measurements of aerosol light absorption at multi-wavelength were continuously conducted in Xiamen,southeast of China in 2014 to determine the light absorption properties including absorption coefficients(σabs) and absorption ?ngstr?m exponent(AAE) in the coastal city.Light absorptions of BC and BrC with their contributions to total light absorption were further quantified. Mean σabsat 370 nm and 880 nm were 56.6 ± 34.3 and 16.5 ± 11.2 Mm-1,respectively. σabspresented a double-peaks diurnal pattern with the maximum in the morning and the minimum in the afternoon. σabswas low in warm seasons and high in cold seasons. AAE ranged from 0.26 to 2.58 with the annual mean of 1.46, implying that both fossil fuel combustion and biomass burning influenced aerosol optical properties. σabsof BrC at 370 nm was 24.0 ± 5.7 Mm-1, contributing 42% to the total absorption. The highest AAE(1.52 ± 0.02) and largest BrC contributions(47% ± 4%) in winter suggested the significant influence of biomass burning on aerosol light absorption. Long-distance air masses passing through North China Plain and the Yangtze River Delta led to high AAE and BrC contributions. High AAE value of 1.46 in July indicated that long-range transport of the air pollutants from intense biomass burning in Southeast Asia would affect aerosol light absorption in Southeast China. The study will improve the understanding of light absorption properties of aerosols and the optical impacts of BrC in China.
基金the National Natural Science Foundation of China(Nos.51935014,51905553,81871494,81871498,51705540)the Hunan Provincial Natural Science Foundation of China(Nos.2019JJ50774,2018JJ3671 and 2019JJ50588)+5 种基金the Jiang Xi Provincial Natural Science Foundation of China(No.20192ACB20005)the Guangdong Province Higher Vocational Colleges&Schools Pearl River Scholar Funded Scheme(2018)the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South Universitythe Project of Hunan Provincial Science and Technology Plan(No.2017RS3008)the Hunan Provincial Innovation Foundation For Postgraduate(No.CX2018B093)the Fundamental Research Funds for the Central Universities of Central South University(Nos.2018zzts022 and 2019zzts725)。
文摘It is challenging for antibacterial polymer scaffolds to achieve the drug sustained-release through directly coating or blending.In this work,halloysite nanotubes(HNTs),a natural aluminosilicate nanotube,were utilized as a nano container to load nano silver(Ag)into the lumen through vacuum negativepressure suction&injection and thermal decomposition of silver acetate.Then,the nano Ag loaded HNTs(HNTs@Ag)were introduced to poly-l-lactic acidide)(PLLA)scaffolds prepared by additive manufacturing for the sustained-release of Ag^+.Acting like a’shield’,the tube walls of HNTs not only retarded the erosion of external aqueous solution on internal nano Ag to generate Ag^+but also postponed the generated Ag^+to diffuse outward.The results indicated the PLLA-HNTs@Ag nanocomposite scaffolds achieved a sustained-release of Ag^+over 28 days without obvious initial burst release.Moreover,the scaffolds exhibited a long-lasting antibacterial property without compromising the cytocompatibility.Besides,the degradation properties,biomineralization ability and mechanical properties of the scaffolds were increased.This study suggests the potential application of inorganic nanotubes as drug carrier for the sustained-release of functional polymer nanocomposite scaffolds.
基金supported by the National Natural Science Foundation of China(Nos.21871125 and 21901122)the Natural Science Foundation of Shandong Province,China(Nos.ZR2019MB043 and ZR2019QB022)+2 种基金the Construction Project of Quality Curriculum for Postgraduate Education of Shandong Province(No.SDYKC19057)the Natural Science Research of Jiangsu Higher Education Institutions of China(No.19KJB150011)Project funded by China Postdoctoral Science Foundation(No.2019M651873).
文摘The development of bifunctional catalysts has drawn much attention in realizing efficient and feasible catalytic systems to meet the diverse dema nd of pote ntial industrial applications.Desig n of stable and powerful bifun ctional catalysts for various catalysis systems is highly desirable yet largely unmet.Here,three kinds of decavanadate-based transition metal hybrids(DTMH)(i.e.,Co-DTMH,Ni-DTMH and Ag-DTMH)have been successfully synthesized through a pH tuning strategy and further characterized.Specifically,the rare M05N six-coordinated transition metal coordination modes have been detected in Co-DTMH and Ni-DTMH,while Ag atoms in Ag-DTMH exhibited three-and five-coordinated geometries with the tuning of specially selected imidazole ligands.Thus-obtained clusters can serve as powerful bifunctional catalysts for both sulfide oxidation and C-C bond construction.Remarkably,Ag-DTMH dem on st rated excellent heteroge ne ous bifunctional catalytic properties in the selective oxidati on of sulfides and construction of C-C bond(yields up to 99%),which enable successful recycling for three cycles with remained catalytic activities and structure stability.The newly designed decavanadate-based transition metal hybrids with bifunctional property hold high promise in the practical applications like continuous catalysis or flow bed reactions.
基金the National Natural Science Foundation of China(62001085)Sichuan Science and Technology Program(2021YFG0349)。
文摘Nowadays,cloud computing has been identified as new opportunities for migrating to the expected agility,reuse,and adaptive capabilities that can support the ever changing IT trends and requirements.Unfortunately,the rapid evolution of those technologies also comes with open issues such as security,privacy,integrity,quality of services,and their possible detrimental consequences.In this work,the concept of insurance is introduced to compensate the cloud computing customers when encountering those failures if service providers(SPs)have insurance purchased.Particularly,we consider the situation when the insurer is unable to see the system failure risk levels of the SPs,which is usually seen as an incomplete information market,in contrast with the optimal situation in a complete information market.First,an insurance-based cloud computing architecture is proposed to build a monetary credit system in which the cloud computing SP pays a premium for a certain coverage to the insurer.Subsequently,problem is formulated to solve the optimal insurance plan in complete and incomplete information markets,together with detail analysis of insurance policies in both cases are provided.Furthermore,simulation results show the properties of the two insurance plans and parameters that affect the design of the insurance plan.