Loess deposits with varying thickness are widely distributed on the intermontane valleys and piedmont zones on the northern side of the central Shandong mountainous regions. However, the basal ages and material resour...Loess deposits with varying thickness are widely distributed on the intermontane valleys and piedmont zones on the northern side of the central Shandong mountainous regions. However, the basal ages and material resources of the loess deposits are not clear. The paper studied the Qingzhou loess profile in Shandong with magnetostratigraphic and optical stimulated luminescence (OSL) methods and further investigated its main provenances with the mineralogical methods. The magnetostratigraphic results showed that the Brunhes/Matuyama (B/M) reversal boundary was not recognized, suggesting a basal age younger than 0.78 Ma. Extrapolations by sedimentation rates, based on the upper part depositional rate from the OSL age, the basal age of the Qingzhou loess is about 0.5 Ma. Until now, older loess deposits have not been reported on the northern side of the central Shandong mountainous regions. The results of the paper indicate that the loess deposits in this area might have strated from the Middle Pleistocene. The basal age of Qingzhou loess is approximately synchronous with the Xiashu loess in the middle-lower reaches of Yangtze River. Major components of clay minerals in the Qingzhou profile are dominated by illite. Other clay mineral compositions are mainly smectite, chlorite and kaolinite, which are similar with the Xifeng loess in the Loess Plateau. However, the contents of smectite and the ratios of illite and kaolinte in the Qingzhou loess samples are higher than those in the Xifeng loess samples of the Loess Plateau, indicating that the loess in the northern side of the central Shandong mountainous regions has different sources from that of the loess deposits in the Loess Plateau. The clay mineral analysis further reinforces the earlier conclu- sion that the marine strata exposed in the Laizhou Bay and the fluvial plain of the lower reaches of Yellow River during the glacier periods are the main material sources for the Qingzhou loess deposits, which is an indicator to the local aridification of the lower reaches of the Yellow River. Loess deposition in the central Shandong mountainous regions started at around 0.5 Ma. The age of Qingzhou loess is approximately synchronous with the ongoing high-latitude cold since the Middle Pleistocene, which indicates that strengthened East Asian winter monsoon was sufficiently energetic to bring substantial quantities of material from the marine strata exposed in the Laizhou Bay and the fluvial plain of the lower reaches of the Yellow River to the central Shandong mountainous regions. The results therefore suggest that both regional geological process and global changes were responsible for the formation of Qingzhou loess since Middle Pleistocene.展开更多
The Liupan Mountains,one of the important mountain ranges in western China,are located on the boundary between the northeastern Tibetan Plateau and the Ordos Block.The uplift history of the Liupan Mountains remains co...The Liupan Mountains,one of the important mountain ranges in western China,are located on the boundary between the northeastern Tibetan Plateau and the Ordos Block.The uplift history of the Liupan Mountains remains controversial.Loess deposits are good tracers of regional tectonic and geomorphic changes,because loess is sensitive to erosion and the formation and preservation of loess requires relatively flat highlands and relatively stable tectonic environments.We investigated the distribution of Neogene loess deposits on the western piedmont of the Liupan Mountains and examined a near-continuous loess section(Nanping section)on the piedmont alluvial highlands.Correlation of magnetic susceptibility stratigraphy with the QA-ⅠMiocene loess sequence dates this 56-m section covering the interval from~8.1 to 6.2 Ma.The lower boundary age of this section,together with previously reported Zhuanglang red clay(sand-gravel layers with intercalated loess during~9–8 Ma and near-continuous loess during~8–4.8 Ma)and Chaona red clay(~8.1–2.58 Ma),indicates that the Liupan Mountains were uplifted in the late Miocene(~9–8 Ma)and basically formed by~8 Ma,attesting to no intense mountain building since that time.In addition,based on the information from the Zhuanglang core and the QA-Ⅰsection,we infer that sizable parts of the Liupan Mountains were uplifted during the late Oligocene–early Miocene and did not experience intense uplift during~22–9 Ma.展开更多
基金funded by the National Natural Science Foundation of China (41072260 and 40402026)
文摘Loess deposits with varying thickness are widely distributed on the intermontane valleys and piedmont zones on the northern side of the central Shandong mountainous regions. However, the basal ages and material resources of the loess deposits are not clear. The paper studied the Qingzhou loess profile in Shandong with magnetostratigraphic and optical stimulated luminescence (OSL) methods and further investigated its main provenances with the mineralogical methods. The magnetostratigraphic results showed that the Brunhes/Matuyama (B/M) reversal boundary was not recognized, suggesting a basal age younger than 0.78 Ma. Extrapolations by sedimentation rates, based on the upper part depositional rate from the OSL age, the basal age of the Qingzhou loess is about 0.5 Ma. Until now, older loess deposits have not been reported on the northern side of the central Shandong mountainous regions. The results of the paper indicate that the loess deposits in this area might have strated from the Middle Pleistocene. The basal age of Qingzhou loess is approximately synchronous with the Xiashu loess in the middle-lower reaches of Yangtze River. Major components of clay minerals in the Qingzhou profile are dominated by illite. Other clay mineral compositions are mainly smectite, chlorite and kaolinite, which are similar with the Xifeng loess in the Loess Plateau. However, the contents of smectite and the ratios of illite and kaolinte in the Qingzhou loess samples are higher than those in the Xifeng loess samples of the Loess Plateau, indicating that the loess in the northern side of the central Shandong mountainous regions has different sources from that of the loess deposits in the Loess Plateau. The clay mineral analysis further reinforces the earlier conclu- sion that the marine strata exposed in the Laizhou Bay and the fluvial plain of the lower reaches of Yellow River during the glacier periods are the main material sources for the Qingzhou loess deposits, which is an indicator to the local aridification of the lower reaches of the Yellow River. Loess deposition in the central Shandong mountainous regions started at around 0.5 Ma. The age of Qingzhou loess is approximately synchronous with the ongoing high-latitude cold since the Middle Pleistocene, which indicates that strengthened East Asian winter monsoon was sufficiently energetic to bring substantial quantities of material from the marine strata exposed in the Laizhou Bay and the fluvial plain of the lower reaches of the Yellow River to the central Shandong mountainous regions. The results therefore suggest that both regional geological process and global changes were responsible for the formation of Qingzhou loess since Middle Pleistocene.
基金supported by the National Natural Science Foundation of China(Grant No.42488201)the Strategy Priority Research Program(Category B)of Chinese Academy of Sciences(Grant No.XDB0710000)。
文摘The Liupan Mountains,one of the important mountain ranges in western China,are located on the boundary between the northeastern Tibetan Plateau and the Ordos Block.The uplift history of the Liupan Mountains remains controversial.Loess deposits are good tracers of regional tectonic and geomorphic changes,because loess is sensitive to erosion and the formation and preservation of loess requires relatively flat highlands and relatively stable tectonic environments.We investigated the distribution of Neogene loess deposits on the western piedmont of the Liupan Mountains and examined a near-continuous loess section(Nanping section)on the piedmont alluvial highlands.Correlation of magnetic susceptibility stratigraphy with the QA-ⅠMiocene loess sequence dates this 56-m section covering the interval from~8.1 to 6.2 Ma.The lower boundary age of this section,together with previously reported Zhuanglang red clay(sand-gravel layers with intercalated loess during~9–8 Ma and near-continuous loess during~8–4.8 Ma)and Chaona red clay(~8.1–2.58 Ma),indicates that the Liupan Mountains were uplifted in the late Miocene(~9–8 Ma)and basically formed by~8 Ma,attesting to no intense mountain building since that time.In addition,based on the information from the Zhuanglang core and the QA-Ⅰsection,we infer that sizable parts of the Liupan Mountains were uplifted during the late Oligocene–early Miocene and did not experience intense uplift during~22–9 Ma.