Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know...Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.展开更多
Objective:Myocardial ischemia-reperfusion injury(MIRI)is one of the leading causes of death from cardiovascular disease in humans,especially in individuals exposed to cold environments.Long non-coding RNAs(lncRNAs)reg...Objective:Myocardial ischemia-reperfusion injury(MIRI)is one of the leading causes of death from cardiovascular disease in humans,especially in individuals exposed to cold environments.Long non-coding RNAs(lncRNAs)regulate MIRI through multiple mechanisms.This study explored the regulatory effect of lncRNA-AK138945 on myocardial ischemia-reperfusion injury and its mechanism.Methods:In vivo,8-to 12-weeks-old C57BL/6 male mice underwent ligation of the left anterior descending coronary artery for 50 minutes followed by reperfusion for 48 hours.In vitro,the primary cultured neonatal mouse ventricular cardiomyocytes(NMVCs)were treated with 100μmol/L hydrogen peroxide(H_(2)O_(2)).The knockdown of lncRNA-AK138945 was evaluated to detect cardiomyocyte apoptosis,and a glucose-regulated,endoplasmic reticulum stress-related protein 94(GRP94)inhibitor was used to detect myocardial injury.Results:We found that the expression level of lncRNA-AK138945 was reduced in MIRI mouse heart tissue and H2O2-treated cardiomyocytes.Moreover,the proportion of apoptosis in cardiomyocytes increased after lncRNA-AK138945 was silenced.The expression level of Bcl2 protein was decreased,and the expression level of Bad,Caspase 9 and Caspase 3 protein was increased.Our further study found that miR-1a-3p is a direct target of lncRNA-AK138945,after lncRNA-AK138945 was silenced in cardiomyocytes,the expression level of miR-1a-3p was increased while the expression level of its downstream protein GRP94 was decreased.Interestingly,treatment with a GRP94 inhibitor(PU-WS13)intensified H2O2-induced cardiomyocyte apoptosis.After overexpression of FOXO3,the expression levels of lncRNA-AK138945 and GRP94 were increased,while the expression levels of miR-1a-3p were decreased.Conclusion:LncRNA-AK138945 inhibits GRP94 expression by regulating miR-1a-3p,leading to cardiomyocyte apoptosis.The transcription factor Forkhead Box Protein O3(FOXO3)participates in cardiomyocyte apoptosis induced by endoplasmic reticulum stress through up-regulation of lncRNA-AK138945.展开更多
Background:Myocardial infarctions(MI)is a major threat to human health especially in people exposed to cold environment.The polarization of macrophages towards different functional phenotypes(M1 macrophages and M2 mac...Background:Myocardial infarctions(MI)is a major threat to human health especially in people exposed to cold environment.The polarization of macrophages towards different functional phenotypes(M1 macrophages and M2 macrophages)is closely related to MI repairment.The growth differentiation factor 11(GDF11)has been reported to play a momentous role in inflammatory associated diseases.In this study,we examined the regulatory role of GDF11 in macrophage polarization and elucidated the underlying mechanisms in MI.Methods:In vivo,the mice model of MI was induced by permanent ligation of the left anterior descending coronary artery(LAD),and mice were randomly divided into the sham group,MI group,and MI+GDF11 group.The protective effect of GDF11 on myocardial infarction and its effect on macrophage polarization were verified by echocardiography,triphenyl tetrazolium chloride staining and immunofluorescence staining of heart tissue.In vitro,based on the RAW264.7 cell line,the effect of GDF11 in promoting macrophage polarization toward the M2 type by inhibiting the Notch1 Signaling pathway was validated by qRT-PCR,Western blot,and flow cytometry.Results:We found that GDF11 was significantly downregulated in the cardiac tissue of MI mice.And GDF11 supplementation can improve the cardiac function.Moreover,GDF11 could reduce the proportion of M1 macrophages and increase the accumulation of M2 macrophages in the heart tissue of MI mice.Furthermore,the cardioprotective effect of GDF11 on MI mice was weakened after macrophage clearance.At the cellular level,application of GDF11 could inhibit the expression of M1 macrophage(classically activated macrophage)markers iNOS,interleukin(IL)-1β,and IL-6 in a dose-dependent manner.In contrast,GDF11 significantly increased the level of M2 macrophage markers including IL-10,CD206,arginase 1(Arg1),and vascular endothelial growth factor(VEGF).Interestingly,GDF11 could promote M1 macrophages polarizing to M2 macrophages.At the molecular level,GDF11 significantly down-regulated the Notch1 signaling pathway,the activation of which has been demonstrated to promote M1 polarization in macrophages.Conclusions:GDF11 promoted macrophage polarization towards M2 to attenuate myocardial infarction via inhibiting Notch1 signaling pathway.展开更多
Structured illumination microscopy(SIM)is a rapidly developing super-resolution technology.It has been widely used in various application fields of biomedicine due to its excellent two-and three-dimensional imaging ca...Structured illumination microscopy(SIM)is a rapidly developing super-resolution technology.It has been widely used in various application fields of biomedicine due to its excellent two-and three-dimensional imaging capabilities.Furthermore,faster three-dimensional imaging methods are required to help enable more research-oriented living cell imaging.In this paper,a fast and sensitive three-dimensional structured illumination microscopy based on asymmetric three-beam interference is proposed.An innovative time-series acquisition method is employed to halve the time required to obtain each raw image.A segmented half-wave plate as a substantial linear polarization modulation method is applied to the three-dimensional SIM system for the first time.Although it needs to acquire 21 raw images instead of 15 to reconstruct one super-resolution image,the SIM setup proposed in this paper is 30%faster than the traditional spatial light modulator-SIM(SLM-SIM)in imaging each super-resolution image.The related theoretical derivation,hardware system,and verification experiment are elaborated in this paper.The stable and fast 3D super-resolution imaging method proposed in this paper is of great significance to the research of organelle interaction,intercellular communication,and other biomedical fields.展开更多
Objective: Anti-vascular endothelial growth factor(VEGF) monoclonal antibodies are an effective means of treating non-small cell lung cancer(NSCLC). Here, we aim to update the equivalent efficacy assessment between QL...Objective: Anti-vascular endothelial growth factor(VEGF) monoclonal antibodies are an effective means of treating non-small cell lung cancer(NSCLC). Here, we aim to update the equivalent efficacy assessment between QL1101 and bevacizumab based on two-year follow-up data.Methods: In total, 535 eligible NSCLC patients were enrolled in this randomized controlled trial. Patients were randomly assigned 1:1 to the QL1101 group and the bevacizumab group. The full end time of this study was defined as 24 months after the last enrolled patient was randomized. The primary endpoint was the objective response rate(ORR);equivalence was confirmed if the two-sided 90% confidence interval(90% CI) of the relative risk was within the range of 0.75-1.33. The secondary endpoints were progression-free survival(PFS) and overall survival(OS).Results: The two-year updated data showed similar ORR(QL1101 vs. bevacizumab: 53.1% vs. 54.3%;relative risk=0.977;90% CI: 0.838-1.144), PFS(235 d vs. 254 d, log-rank P=0.311), and OS(577 d vs. 641 d, log-rank P=0.099) results between the QL1101 group and the bevacizumab group. The mean shrinkage ratio of targeted lesions was also similar between the QL1101 group and the bevacizumab group(22.5% vs. 23.5%). For patients who received QL1101 maintenance therapy, similar results were shown between the QL1101 group(n=157) and the bevacizumab group(n=148)(PFS: 253 d vs. 272 d, log-rank P=0.387;OS: 673 d vs. 790 d, log-rank P=0.101;mean tumor shrinkage rate: 26.6% vs. 27.5%).Conclusions: This study reported that QL1101 had similar efficacy in treating nonsquamous NSCLC in terms of ORR, PFS and OS based on two-year updated data, providing a basis for the clinical application of QL1101.展开更多
This study examines spatial and temporal changes in 16 extreme temperature indices at 37 weather stations in Xinjiang and their associations with changes in climate means during 1961-2008. Linear regression analyses r...This study examines spatial and temporal changes in 16 extreme temperature indices at 37 weather stations in Xinjiang and their associations with changes in climate means during 1961-2008. Linear regression analyses reveal that significant increas- ing trends in temperature were observed over Xinjiang, with the rate of 0.13 ~C/decade, 0.24 ~C/decade, and 0.52 ~C/decade for annual mean temperature, annual maximum, and minimum temperature, respectively. Annual fi'equency of cool nights (days) has decreased by -2.45 days/decade (-0.86 days/decade), whereas the frequency of warm nights (days) has increased by 4.85 days/decade (1.62 days/decade). Seasonally, the frequencies of summer warm nights and days are changing more rap- idly than the corresponding frequencies for cool nights and days. However, normalization of the extreme and mean series shows that the rate of changes in extreme temperature events are generally less than those of mean temperatures, except for winter cold nights which are changing as rapidly as the winter mean minimum temperatures. These results indicate that there have been seasonally and diurnally asymmetric changes in extreme temperature events relative to recent increases in tempera- ture means in Xinjiang.展开更多
Organic and inorganic carbon contents of marine sediments are important to reconstruct marine productivity,global carbon cycle, and climate change. A proper method to separate and determine organic and inorganic carbo...Organic and inorganic carbon contents of marine sediments are important to reconstruct marine productivity,global carbon cycle, and climate change. A proper method to separate and determine organic and inorganic carbons is thus of great necessity. Although the best method is still disputable, the acid leaching method is widely used in many laboratories because of its ease-of-use and high accuracy. The results of the elemental analysis of sediment trap samples reveal that organic and inorganic carbon contents cannot be obtained using the acid leaching method, causing an infinitely amplified error when the carbon content of the decarbonated sample is 12%±1% according to a mathematical derivation. Acid fumigation and gasometric methods are used for comparison, which indicates that other methods can avoid this problem in organic carbon analysis. For the first time, this study uncovers the pitfalls of the acid leaching method, which limits the implication in practical laboratory measurement, and recommends alternative solutions of organic/inorganic carbon determination in marine sediments.展开更多
In this paper, an analysis, with the simulation of PRECIS (Providing Regional Climate for Impact Studies), was made for future precipitation extremes, under SRES (Special Report on Emission Scenarios) A2 and B2 in...In this paper, an analysis, with the simulation of PRECIS (Providing Regional Climate for Impact Studies), was made for future precipitation extremes, under SRES (Special Report on Emission Scenarios) A2 and B2 in IPCC (Intergovernmental Panel on Climate Change) AR4. The precipitation extremes were calculated and analyzed by ETCCDI (Climate Change Detection and Indices). The results show that: (1) In Present Scenario (1961 1900), PRECIS could capture the spatial pattern of precipitation in Xinjiang. (2) The simulated annual precipitation and seasonal precipitation in Xinjiang had a significantly positive trend and its variability had been deeply impacted by terrain. There was a strong association between increasing trend and the extreme precipitation's increase in frequency and intensity during 1961-2008. Under SRES A2 and B2, extreme precipitation indicated an increasing tendency at the end of the 21st century. The extreme summer pre- cipitation increased prominently in a year. (3) PREC1S's simulation under SRES A2 and B2 indicated increased frequency of heavy precipitation events and also enhancement in their intensity towards the end of the 21 st century. Both A2 and B2 scenarios show similar patterns of projected changes in precipitation extremes towards the end of the 21st century. However, the magnitude of changes in B2 scenario was on the lower side. In case of extreme precipitation, variation between models can exceed both internal variability and variability of different SRES.展开更多
Sediment traps are an important tool for studying the source, composition and sedimentation processes of sinking particulate matter in the ocean. An in situ observational mooring(TJ-A-1) is located in the northern Sou...Sediment traps are an important tool for studying the source, composition and sedimentation processes of sinking particulate matter in the ocean. An in situ observational mooring(TJ-A-1) is located in the northern South China Sea(20.05°N, 117.42°E) at a water depth of 2 100 m and equipped with two sediment traps deployed at 500 m and 1 950 m. Samples were collected at 18-day intervals, and 20 samples were obtained at both depths from May 2014 to May 2015. Large amounts of fecal matter and marine snow were collected in the lower trap. The fluxes of marine snow and fecal pellets exhibited a fluctuating decrease between May 2014 and early August 2014 and then stabilized at a relatively low level. Scanning electron microscopy observations revealed that the main components of the marine snow and fecal pellets were diatoms, coccolithophores, radiolarians, and other debris, all of which are planktons mostly produced in photic zone. Used in conjunction with the particle collection range estimates from the lower trap and data on ocean surface chlorophyll, these marine snow and fecal pellets were related to the lateral transport of deep water and not vertical migrations from overlying water column. Moreover, the source area might be southwest of Taiwan.展开更多
Typhoon has an impact on an estuary and coastal environment.However,the present research lacks the detailed description of material transport processes during typhoon passage,such as the transport channels and barrier...Typhoon has an impact on an estuary and coastal environment.However,the present research lacks the detailed description of material transport processes during typhoon passage,such as the transport channels and barriers in the course of material transport and material accumulation area,etc.Therefore,Lagrangian coherent structures(a method developed for describing the transport structure of fluids in recent years)was introduced to investigate and predict the floating material and debris transport process in the Laizhou Bay,Bohai Sea,during typhoon Lekima in 2019.Results show that the Lagrangian coherent structure could well explain the complex flow phenomena in the bay.During the typhoon,the general direction of floating material transport in the Laizhou Bay was anticlockwise.There was a channel for material transport in the northwest and south of the bay,and there are transportation obstacles in the northeast-southwest direction in the middle of the bay.Therefore,the typhoon might worsen the water quality.These results provide references for precise countermeasures to control the formulation of pollution in the Laizhou Bay.展开更多
Citrate-reduced silver nanoparticles (Ag-NPs) are used extensively for surface-enhanced Raman scattering (SERS) studies, but are typically found to aggregate using an aggregation agent. This study is aimed at developi...Citrate-reduced silver nanoparticles (Ag-NPs) are used extensively for surface-enhanced Raman scattering (SERS) studies, but are typically found to aggregate using an aggregation agent. This study is aimed at developing a simple, stable, and reproducible aggregated method for Ag-NPs without any aggregation agents in aqueous solutions. The aggregation is induced by the process of centrifugation, water washing and ultrasonication. A mechanism based on the nonuniform distribution of capping ligands is proposed to account for the aggregated structure formation. UV-Vis-NIR extinction spectra and TEM allowed us to identify the existence of Ag-NPs aggregation. Further, due to the polydisperse mixture of Ag-NPs (20~65 nm) used in the present work, Ag-NPs are aggregated closely, which contribute to the observation of low-concentration SERS from the residual citrate layer or even the single-molecule SERS of R6Gon aggregation. After the evaporation of droplet of Ag-NPs aggregation on the Si substrate, citrate or R6Gcould also be detected but with marked redor blue-shifts.展开更多
Erratum to:https://doi.org/10.1007/s00343-021-0384-7 The authors’affiliations of this article contain a few mistakes.The correct ones are given below:1 College of Environmental Science and Engineering,Ocean Universit...Erratum to:https://doi.org/10.1007/s00343-021-0384-7 The authors’affiliations of this article contain a few mistakes.The correct ones are given below:1 College of Environmental Science and Engineering,Ocean University of China,Qingdao 266100,China 2 Key Laboratory of Marine Environment and Ecology,Ministry of Education of China,Ocean University of China,Qingdao 266100,China The online version of the original articles can be found at:https://doi.org/10.1007/s00343-021-0384-7.展开更多
Oxygen vacancy(Vo)is a significant component in defect engineering.The present work reports the anchoring effects of initial Vo for further loading modifications and the reducing capacity of photoinduced Vo for pure w...Oxygen vacancy(Vo)is a significant component in defect engineering.The present work reports the anchoring effects of initial Vo for further loading modifications and the reducing capacity of photoinduced Vo for pure water splitting.Herein,we propose Ni-loaded Cu-doped TiO_(2)(NCT)materials by successive doping and loading.The continuously added Ni ions should accumulate around the Vos and gradually grow into complete nickel oxide crystals,achieving a higher average valence state of the Ni species.NiO crystals can be detected on a 0.5%NCT sample,while the structure of Ni_(2)O_(3) has been confirmed with a higher nickel mass ratio.Moreover,the introduction of nickel oxide effectively improves the photochemical and electrochemical performance by the interface charge separation,finally reaching an H2 yield of 30.6 pmol/g-cat on 0.5%NCT for Vo-based photo-thermal coupling reaction,which consists of Vo generation in photo and Vo consumption in thermal environment.In situ infrared spectroscopy further indicated that the presence of high valence state nickel oxide hindered the H2 formation but effectively promoted the conventional oxidizing reaction,with an H2 yield of 20.6 mmol/g-cat in a methanol-water reaction on the 2.0%NCT material.In summary,Vo controls the morphological structure of Ni loading and produces diverse effects for reactions with dissimilar mechanisms,which provides a novel way to design modifications for promoting various chemical reactions.展开更多
Objective The aim of the study was to further explore the diagnostic value of breast dynamic contrast enhancement (DCE), and improve specificity of breast cancer diagnosis.
This study was conducted to investigate the gene expression in fructose-fed rat skeletal muscle by cDNA chip which could provide support to elucidate the molecular mechanisms underlying insulin resistance. The rats we...This study was conducted to investigate the gene expression in fructose-fed rat skeletal muscle by cDNA chip which could provide support to elucidate the molecular mechanisms underlying insulin resistance. The rats were divided into two groups, one of which was normal control and the other was fed with fructose-rich diet. The mRNA was isolated and purified from the skeletal muscle of two groups. The mRNA from two kinds of tissue was reverse transcribed to cDNA with Cy3-dUTP and Cy5-dUTP separately to prepare hybridization probes. The mixed probes were hybridized to cDNA microarray. The microarray was scanned, analyzed and repeated for two times. Among the total 4 096 tested genes, 140 genes were differently expressed, 62 up-regulated,78 down-regulated, the expression of Ptprd and Gilz and multiple genes of oxidative metabolism is associated in insulin resistance. The differential expression of gene may be related to the pathogenesis of insulin resistance.展开更多
Cy5.5-MSA-G250 nanoparticles(CMGNPs)had been proved to have unique advantages for cancer treatment,including excellent photothermal performance,tumor cell-selective cytotoxicity,direct visualization,and good biocompat...Cy5.5-MSA-G250 nanoparticles(CMGNPs)had been proved to have unique advantages for cancer treatment,including excellent photothermal performance,tumor cell-selective cytotoxicity,direct visualization,and good biocompatibility.However,to cellular systems,the CMGNPs are considered as fo reign invaders,and the effect of CMGNPs on immunity system is still unknown.Therefore,more efforts are needed to understand the role of CMGNPs on the immunity system.In this study,we attempted to screen the pro-inflammatory responses on RAW264.7 macrophages after treated with the CMGNPs.In vitro experiments clearly showed that CMGNPs not only enhances phagocytosis capacity of RAW264.7 cells,but also promotes Ml polarization,associated with changes in cell morphology and increased expression of inflammatory cytokines.This ability to induce Ml polarization may be beneficial to CMGNPs to achieve better anticancer effects in clinical trials.Moreover,the observed Ml macrophages’ polarization triggered by CMGNPs can be abolished after adding TLR4 inhibitor,CLI095,suggesting that TLR4 is involved in CMGNP-induced inflammation.展开更多
The temporal and spatial evolution of a deep-reaching anticyclonic eddy(AE) is studied using a combination of satellite measurements, moored observations and ocean model reanalysis data in the South China Sea(SCS). Th...The temporal and spatial evolution of a deep-reaching anticyclonic eddy(AE) is studied using a combination of satellite measurements, moored observations and ocean model reanalysis data in the South China Sea(SCS). Three evolutionary stages in eddy's lifecycle are identified from changes in eddy dynamical characteristics estimated from satellite altimetry: birth(22 days), growth(64 days), and decay(47 days). Similar patterns are also distinguished from dynamic signals in HYCOM.Further, flows reversal and upwelling of cold water below 1500 m were captured by the in-situ records when this energetic,highly nonlinear and long-lived(over 19 weeks) AE passed by our mooring position. Its detailed vertical structure is examined through temperature anomalies, vertical shear of horizontal velocities, and horizontal streamlines estimated from ocean model reanalysis data. Results from the model reveal a mesoscale AE with first-mode baroclinic structure: a bowl-shaped anticyclonic flow in the upper ocean connected to a slant-cylinder cyclonic flow at depth, with a transition layer at depths between 400 and 700 m. It is in good agreement with moored observations but showing a shallower transition depth, suggesting a slight deficiency in the model due to limited deep-sea observations. Last, we estimate eddy heat transport at different depths and stages along the AE's path based on the model data. The result reveals that pronounced heat fluxes occur during growth stage(depths <400 m),counting for 73.03% of the total value. In the decay stage, major heat transport occurs at deeper depth(depths >700–1500 m).Dynamical characteristics suggest that the vertical structure and temporal evolution of the eddy play significant roles in basinscale movement and heat transferring. Considering that mesoscale eddies are ubiquitous in the SCS, our results support a recently-proposed mechanism, whereby upper ocean flows produce changes in the deep-sea circulation, potentially influencing boundary layer dynamics. For the first time to track and link an individual AE observed by satellite altimetry and ocean model,comparisons indicate that assimilative HYCOM outputs may be useful for examining the deep ocean properties within the SCS,especially under the impact of such an intensified surface-detected eddy.展开更多
Tides are the major energy source for ocean mixing, regulating the variation of oceanic circulation and sediment transport in the deep sea. Here twenty months of high-resolution current profiles, which were observed v...Tides are the major energy source for ocean mixing, regulating the variation of oceanic circulation and sediment transport in the deep sea. Here twenty months of high-resolution current profiles, which were observed via a mooring system at a water depth of 2100 m in the northern South China Sea(SCS), are used to investigate seasonal variability in deep-sea tides.Spectral analysis shows that tides in this region are dominated by diurnal tide, and both diurnal and semidiurnal tide are vertical mode-1 dominant. Baroclinic diurnal tidal current exhibits pronounced seasonal variability, showing its kinetic energy was the strongest in summer, and the maximum depth-averaged value was up to 86.7 cm^2 s^(-2), which was about 1.5 times of that in winter and twice that in spring and autumn. In contrast, baroclinic semidiurnal tide displays no evident seasonal variability. Such seasonal variability in baroclinic tide was mainly modulated by the barotropic forcing from the Luzon Strait. On the other hand,two anticyclonic eddies and one cyclonic eddy, which originated off southwestern Taiwan in winter, crossed the mooring system.The cyclonic eddy had weak impact on current velocity in the deep sea, but the two deep-reaching anticyclonic eddies enhanced the current velocity through the full-water column by inducing strong subinertial flows. Consequently, the kinetic energy of tides was strengthened and the incoherent variance of baroclinic diurnal tide increased in winter, which contributed ~85% of the variability in diurnal tide. Meanwhile, the velocity of baroclinic diurnal tide was reduced in winter, which was attributed to the weakened stratification induced by the passage of anticyclonic eddies in the deep sea. The seasonal variability of tides in the deep northern SCS can provide a dynamic mechanism for interpreting sediment transport processes in the deep sea on different time scales.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62005307 and 61975228).
文摘Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.
基金This work was supported in part by the National Natural Science Foundation of China(82370417,81970320,82270273)the Certificate of China Postdoctoral Science Foundation Grant(2021M693826)+1 种基金the postdoctoral funding from Heilongjiang Province(21042230046)the Hai Yan Youth Fund from Harbin Medical University Cancer Hospital(JJQN2021-09).
文摘Objective:Myocardial ischemia-reperfusion injury(MIRI)is one of the leading causes of death from cardiovascular disease in humans,especially in individuals exposed to cold environments.Long non-coding RNAs(lncRNAs)regulate MIRI through multiple mechanisms.This study explored the regulatory effect of lncRNA-AK138945 on myocardial ischemia-reperfusion injury and its mechanism.Methods:In vivo,8-to 12-weeks-old C57BL/6 male mice underwent ligation of the left anterior descending coronary artery for 50 minutes followed by reperfusion for 48 hours.In vitro,the primary cultured neonatal mouse ventricular cardiomyocytes(NMVCs)were treated with 100μmol/L hydrogen peroxide(H_(2)O_(2)).The knockdown of lncRNA-AK138945 was evaluated to detect cardiomyocyte apoptosis,and a glucose-regulated,endoplasmic reticulum stress-related protein 94(GRP94)inhibitor was used to detect myocardial injury.Results:We found that the expression level of lncRNA-AK138945 was reduced in MIRI mouse heart tissue and H2O2-treated cardiomyocytes.Moreover,the proportion of apoptosis in cardiomyocytes increased after lncRNA-AK138945 was silenced.The expression level of Bcl2 protein was decreased,and the expression level of Bad,Caspase 9 and Caspase 3 protein was increased.Our further study found that miR-1a-3p is a direct target of lncRNA-AK138945,after lncRNA-AK138945 was silenced in cardiomyocytes,the expression level of miR-1a-3p was increased while the expression level of its downstream protein GRP94 was decreased.Interestingly,treatment with a GRP94 inhibitor(PU-WS13)intensified H2O2-induced cardiomyocyte apoptosis.After overexpression of FOXO3,the expression levels of lncRNA-AK138945 and GRP94 were increased,while the expression levels of miR-1a-3p were decreased.Conclusion:LncRNA-AK138945 inhibits GRP94 expression by regulating miR-1a-3p,leading to cardiomyocyte apoptosis.The transcription factor Forkhead Box Protein O3(FOXO3)participates in cardiomyocyte apoptosis induced by endoplasmic reticulum stress through up-regulation of lncRNA-AK138945.
基金This work was supported by the National Natural Science Foundation of China(81970320 and 82003749).
文摘Background:Myocardial infarctions(MI)is a major threat to human health especially in people exposed to cold environment.The polarization of macrophages towards different functional phenotypes(M1 macrophages and M2 macrophages)is closely related to MI repairment.The growth differentiation factor 11(GDF11)has been reported to play a momentous role in inflammatory associated diseases.In this study,we examined the regulatory role of GDF11 in macrophage polarization and elucidated the underlying mechanisms in MI.Methods:In vivo,the mice model of MI was induced by permanent ligation of the left anterior descending coronary artery(LAD),and mice were randomly divided into the sham group,MI group,and MI+GDF11 group.The protective effect of GDF11 on myocardial infarction and its effect on macrophage polarization were verified by echocardiography,triphenyl tetrazolium chloride staining and immunofluorescence staining of heart tissue.In vitro,based on the RAW264.7 cell line,the effect of GDF11 in promoting macrophage polarization toward the M2 type by inhibiting the Notch1 Signaling pathway was validated by qRT-PCR,Western blot,and flow cytometry.Results:We found that GDF11 was significantly downregulated in the cardiac tissue of MI mice.And GDF11 supplementation can improve the cardiac function.Moreover,GDF11 could reduce the proportion of M1 macrophages and increase the accumulation of M2 macrophages in the heart tissue of MI mice.Furthermore,the cardioprotective effect of GDF11 on MI mice was weakened after macrophage clearance.At the cellular level,application of GDF11 could inhibit the expression of M1 macrophage(classically activated macrophage)markers iNOS,interleukin(IL)-1β,and IL-6 in a dose-dependent manner.In contrast,GDF11 significantly increased the level of M2 macrophage markers including IL-10,CD206,arginase 1(Arg1),and vascular endothelial growth factor(VEGF).Interestingly,GDF11 could promote M1 macrophages polarizing to M2 macrophages.At the molecular level,GDF11 significantly down-regulated the Notch1 signaling pathway,the activation of which has been demonstrated to promote M1 polarization in macrophages.Conclusions:GDF11 promoted macrophage polarization towards M2 to attenuate myocardial infarction via inhibiting Notch1 signaling pathway.
基金This work was funded by The National Key R&D Program of China(2016YFF0102000)Scientific Research and Equipment Development Project of CAS(YJKYYQ20180032 and YJKYYQ20190048)Major Innovative Research Team of Suzhou(ZXT2019007).
文摘Structured illumination microscopy(SIM)is a rapidly developing super-resolution technology.It has been widely used in various application fields of biomedicine due to its excellent two-and three-dimensional imaging capabilities.Furthermore,faster three-dimensional imaging methods are required to help enable more research-oriented living cell imaging.In this paper,a fast and sensitive three-dimensional structured illumination microscopy based on asymmetric three-beam interference is proposed.An innovative time-series acquisition method is employed to halve the time required to obtain each raw image.A segmented half-wave plate as a substantial linear polarization modulation method is applied to the three-dimensional SIM system for the first time.Although it needs to acquire 21 raw images instead of 15 to reconstruct one super-resolution image,the SIM setup proposed in this paper is 30%faster than the traditional spatial light modulator-SIM(SLM-SIM)in imaging each super-resolution image.The related theoretical derivation,hardware system,and verification experiment are elaborated in this paper.The stable and fast 3D super-resolution imaging method proposed in this paper is of great significance to the research of organelle interaction,intercellular communication,and other biomedical fields.
基金supported by Shanghai Xuhui District municipal health commission [grant number XHLHGG201806]Shanghai Shenkang three-year project [grant number SHDC2020CR4017]。
基金supported by the foundation of Chinese Society of Clinical Oncology (No. Y-2019AZZD-0355 & Y-QL2019-0125)the foundation of Shanghai Chest Hospital (No. 2019YNJCM11)the program of system biomedicine innovation center from Shanghai Jiao Tong University (No. YG2021QN121)
文摘Objective: Anti-vascular endothelial growth factor(VEGF) monoclonal antibodies are an effective means of treating non-small cell lung cancer(NSCLC). Here, we aim to update the equivalent efficacy assessment between QL1101 and bevacizumab based on two-year follow-up data.Methods: In total, 535 eligible NSCLC patients were enrolled in this randomized controlled trial. Patients were randomly assigned 1:1 to the QL1101 group and the bevacizumab group. The full end time of this study was defined as 24 months after the last enrolled patient was randomized. The primary endpoint was the objective response rate(ORR);equivalence was confirmed if the two-sided 90% confidence interval(90% CI) of the relative risk was within the range of 0.75-1.33. The secondary endpoints were progression-free survival(PFS) and overall survival(OS).Results: The two-year updated data showed similar ORR(QL1101 vs. bevacizumab: 53.1% vs. 54.3%;relative risk=0.977;90% CI: 0.838-1.144), PFS(235 d vs. 254 d, log-rank P=0.311), and OS(577 d vs. 641 d, log-rank P=0.099) results between the QL1101 group and the bevacizumab group. The mean shrinkage ratio of targeted lesions was also similar between the QL1101 group and the bevacizumab group(22.5% vs. 23.5%). For patients who received QL1101 maintenance therapy, similar results were shown between the QL1101 group(n=157) and the bevacizumab group(n=148)(PFS: 253 d vs. 272 d, log-rank P=0.387;OS: 673 d vs. 790 d, log-rank P=0.101;mean tumor shrinkage rate: 26.6% vs. 27.5%).Conclusions: This study reported that QL1101 had similar efficacy in treating nonsquamous NSCLC in terms of ORR, PFS and OS based on two-year updated data, providing a basis for the clinical application of QL1101.
基金funded by a special scientific research project (GYHY200706008) in the public welfare industry (meteorology)the "Western Light" Project (RCPY200902) of the Chinese Academy of Sciencesthe National Natural Science Foundation(41171066) of Xinjiang Institute of Ecology and Geography
文摘This study examines spatial and temporal changes in 16 extreme temperature indices at 37 weather stations in Xinjiang and their associations with changes in climate means during 1961-2008. Linear regression analyses reveal that significant increas- ing trends in temperature were observed over Xinjiang, with the rate of 0.13 ~C/decade, 0.24 ~C/decade, and 0.52 ~C/decade for annual mean temperature, annual maximum, and minimum temperature, respectively. Annual fi'equency of cool nights (days) has decreased by -2.45 days/decade (-0.86 days/decade), whereas the frequency of warm nights (days) has increased by 4.85 days/decade (1.62 days/decade). Seasonally, the frequencies of summer warm nights and days are changing more rap- idly than the corresponding frequencies for cool nights and days. However, normalization of the extreme and mean series shows that the rate of changes in extreme temperature events are generally less than those of mean temperatures, except for winter cold nights which are changing as rapidly as the winter mean minimum temperatures. These results indicate that there have been seasonally and diurnally asymmetric changes in extreme temperature events relative to recent increases in tempera- ture means in Xinjiang.
基金The National Natural Science Foundation of China under contract Nos 41530964,41776047,41876048 and 91528304。
文摘Organic and inorganic carbon contents of marine sediments are important to reconstruct marine productivity,global carbon cycle, and climate change. A proper method to separate and determine organic and inorganic carbons is thus of great necessity. Although the best method is still disputable, the acid leaching method is widely used in many laboratories because of its ease-of-use and high accuracy. The results of the elemental analysis of sediment trap samples reveal that organic and inorganic carbon contents cannot be obtained using the acid leaching method, causing an infinitely amplified error when the carbon content of the decarbonated sample is 12%±1% according to a mathematical derivation. Acid fumigation and gasometric methods are used for comparison, which indicates that other methods can avoid this problem in organic carbon analysis. For the first time, this study uncovers the pitfalls of the acid leaching method, which limits the implication in practical laboratory measurement, and recommends alternative solutions of organic/inorganic carbon determination in marine sediments.
基金funded by Henan Province Office of education of Humanities and social science research projects (2014-qn-151)the "Western Light" Project (RCPY200902) of the Chinese Academy of Sciences+3 种基金the special scientific research project (GYHY200706008)the project of National Social Science Foundation (14CJY077)Science and Technology Department of Henan Province key scientific and technological project (142102310299)the National Natural Science Foundation (41171066) of Xinjiang Institute of Ecology and Geography
文摘In this paper, an analysis, with the simulation of PRECIS (Providing Regional Climate for Impact Studies), was made for future precipitation extremes, under SRES (Special Report on Emission Scenarios) A2 and B2 in IPCC (Intergovernmental Panel on Climate Change) AR4. The precipitation extremes were calculated and analyzed by ETCCDI (Climate Change Detection and Indices). The results show that: (1) In Present Scenario (1961 1900), PRECIS could capture the spatial pattern of precipitation in Xinjiang. (2) The simulated annual precipitation and seasonal precipitation in Xinjiang had a significantly positive trend and its variability had been deeply impacted by terrain. There was a strong association between increasing trend and the extreme precipitation's increase in frequency and intensity during 1961-2008. Under SRES A2 and B2, extreme precipitation indicated an increasing tendency at the end of the 21st century. The extreme summer pre- cipitation increased prominently in a year. (3) PREC1S's simulation under SRES A2 and B2 indicated increased frequency of heavy precipitation events and also enhancement in their intensity towards the end of the 21 st century. Both A2 and B2 scenarios show similar patterns of projected changes in precipitation extremes towards the end of the 21st century. However, the magnitude of changes in B2 scenario was on the lower side. In case of extreme precipitation, variation between models can exceed both internal variability and variability of different SRES.
基金The National Natural Science Foundation of China under contract Nos 91528304 and 41376043.
文摘Sediment traps are an important tool for studying the source, composition and sedimentation processes of sinking particulate matter in the ocean. An in situ observational mooring(TJ-A-1) is located in the northern South China Sea(20.05°N, 117.42°E) at a water depth of 2 100 m and equipped with two sediment traps deployed at 500 m and 1 950 m. Samples were collected at 18-day intervals, and 20 samples were obtained at both depths from May 2014 to May 2015. Large amounts of fecal matter and marine snow were collected in the lower trap. The fluxes of marine snow and fecal pellets exhibited a fluctuating decrease between May 2014 and early August 2014 and then stabilized at a relatively low level. Scanning electron microscopy observations revealed that the main components of the marine snow and fecal pellets were diatoms, coccolithophores, radiolarians, and other debris, all of which are planktons mostly produced in photic zone. Used in conjunction with the particle collection range estimates from the lower trap and data on ocean surface chlorophyll, these marine snow and fecal pellets were related to the lateral transport of deep water and not vertical migrations from overlying water column. Moreover, the source area might be southwest of Taiwan.
基金Supported by the National Natural Science Foundation of China(No.41974085)the National Key R&D Program of China(No.2019YFC1408100)。
文摘Typhoon has an impact on an estuary and coastal environment.However,the present research lacks the detailed description of material transport processes during typhoon passage,such as the transport channels and barriers in the course of material transport and material accumulation area,etc.Therefore,Lagrangian coherent structures(a method developed for describing the transport structure of fluids in recent years)was introduced to investigate and predict the floating material and debris transport process in the Laizhou Bay,Bohai Sea,during typhoon Lekima in 2019.Results show that the Lagrangian coherent structure could well explain the complex flow phenomena in the bay.During the typhoon,the general direction of floating material transport in the Laizhou Bay was anticlockwise.There was a channel for material transport in the northwest and south of the bay,and there are transportation obstacles in the northeast-southwest direction in the middle of the bay.Therefore,the typhoon might worsen the water quality.These results provide references for precise countermeasures to control the formulation of pollution in the Laizhou Bay.
文摘Citrate-reduced silver nanoparticles (Ag-NPs) are used extensively for surface-enhanced Raman scattering (SERS) studies, but are typically found to aggregate using an aggregation agent. This study is aimed at developing a simple, stable, and reproducible aggregated method for Ag-NPs without any aggregation agents in aqueous solutions. The aggregation is induced by the process of centrifugation, water washing and ultrasonication. A mechanism based on the nonuniform distribution of capping ligands is proposed to account for the aggregated structure formation. UV-Vis-NIR extinction spectra and TEM allowed us to identify the existence of Ag-NPs aggregation. Further, due to the polydisperse mixture of Ag-NPs (20~65 nm) used in the present work, Ag-NPs are aggregated closely, which contribute to the observation of low-concentration SERS from the residual citrate layer or even the single-molecule SERS of R6Gon aggregation. After the evaporation of droplet of Ag-NPs aggregation on the Si substrate, citrate or R6Gcould also be detected but with marked redor blue-shifts.
基金Supported by the National Natural Science Foundation of China(No.41974085)the National Key R&D Program of China(No.2019YFC1408100)。
文摘Erratum to:https://doi.org/10.1007/s00343-021-0384-7 The authors’affiliations of this article contain a few mistakes.The correct ones are given below:1 College of Environmental Science and Engineering,Ocean University of China,Qingdao 266100,China 2 Key Laboratory of Marine Environment and Ecology,Ministry of Education of China,Ocean University of China,Qingdao 266100,China The online version of the original articles can be found at:https://doi.org/10.1007/s00343-021-0384-7.
基金financially supported by the National Natural Science Foundation of China(51976190)the Zhejiang Provincial Natural Science Foundation(LR18E060001)+1 种基金the Innovative Research Groups of the National Natural Science Foundation of China(51621005)the Fundamental Research Funds for the Central Universities(2019FZA4013)。
文摘Oxygen vacancy(Vo)is a significant component in defect engineering.The present work reports the anchoring effects of initial Vo for further loading modifications and the reducing capacity of photoinduced Vo for pure water splitting.Herein,we propose Ni-loaded Cu-doped TiO_(2)(NCT)materials by successive doping and loading.The continuously added Ni ions should accumulate around the Vos and gradually grow into complete nickel oxide crystals,achieving a higher average valence state of the Ni species.NiO crystals can be detected on a 0.5%NCT sample,while the structure of Ni_(2)O_(3) has been confirmed with a higher nickel mass ratio.Moreover,the introduction of nickel oxide effectively improves the photochemical and electrochemical performance by the interface charge separation,finally reaching an H2 yield of 30.6 pmol/g-cat on 0.5%NCT for Vo-based photo-thermal coupling reaction,which consists of Vo generation in photo and Vo consumption in thermal environment.In situ infrared spectroscopy further indicated that the presence of high valence state nickel oxide hindered the H2 formation but effectively promoted the conventional oxidizing reaction,with an H2 yield of 20.6 mmol/g-cat in a methanol-water reaction on the 2.0%NCT material.In summary,Vo controls the morphological structure of Ni loading and produces diverse effects for reactions with dissimilar mechanisms,which provides a novel way to design modifications for promoting various chemical reactions.
基金Supported by the grant from Guangdong Province Social Development Project (No. 2010133)
文摘Objective The aim of the study was to further explore the diagnostic value of breast dynamic contrast enhancement (DCE), and improve specificity of breast cancer diagnosis.
基金Supported by"125"Major Scientific and Technological Project of Education Department of Guizhou Province[QJHZDZXZ(2012)013]Guiyang Science and Technology Bureau Project[2012204]
文摘This study was conducted to investigate the gene expression in fructose-fed rat skeletal muscle by cDNA chip which could provide support to elucidate the molecular mechanisms underlying insulin resistance. The rats were divided into two groups, one of which was normal control and the other was fed with fructose-rich diet. The mRNA was isolated and purified from the skeletal muscle of two groups. The mRNA from two kinds of tissue was reverse transcribed to cDNA with Cy3-dUTP and Cy5-dUTP separately to prepare hybridization probes. The mixed probes were hybridized to cDNA microarray. The microarray was scanned, analyzed and repeated for two times. Among the total 4 096 tested genes, 140 genes were differently expressed, 62 up-regulated,78 down-regulated, the expression of Ptprd and Gilz and multiple genes of oxidative metabolism is associated in insulin resistance. The differential expression of gene may be related to the pathogenesis of insulin resistance.
基金financially supported by the National Natural Science Foundation of China (Nos. 81660592, 81660301 and 81860037)the Key New and High-Tech Project of the Department of Science and Technology of Hainan Province (No. ZDYF2016023)
文摘Cy5.5-MSA-G250 nanoparticles(CMGNPs)had been proved to have unique advantages for cancer treatment,including excellent photothermal performance,tumor cell-selective cytotoxicity,direct visualization,and good biocompatibility.However,to cellular systems,the CMGNPs are considered as fo reign invaders,and the effect of CMGNPs on immunity system is still unknown.Therefore,more efforts are needed to understand the role of CMGNPs on the immunity system.In this study,we attempted to screen the pro-inflammatory responses on RAW264.7 macrophages after treated with the CMGNPs.In vitro experiments clearly showed that CMGNPs not only enhances phagocytosis capacity of RAW264.7 cells,but also promotes Ml polarization,associated with changes in cell morphology and increased expression of inflammatory cytokines.This ability to induce Ml polarization may be beneficial to CMGNPs to achieve better anticancer effects in clinical trials.Moreover,the observed Ml macrophages’ polarization triggered by CMGNPs can be abolished after adding TLR4 inhibitor,CLI095,suggesting that TLR4 is involved in CMGNP-induced inflammation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91128206, 41576005, 91528304 & 41530964)
文摘The temporal and spatial evolution of a deep-reaching anticyclonic eddy(AE) is studied using a combination of satellite measurements, moored observations and ocean model reanalysis data in the South China Sea(SCS). Three evolutionary stages in eddy's lifecycle are identified from changes in eddy dynamical characteristics estimated from satellite altimetry: birth(22 days), growth(64 days), and decay(47 days). Similar patterns are also distinguished from dynamic signals in HYCOM.Further, flows reversal and upwelling of cold water below 1500 m were captured by the in-situ records when this energetic,highly nonlinear and long-lived(over 19 weeks) AE passed by our mooring position. Its detailed vertical structure is examined through temperature anomalies, vertical shear of horizontal velocities, and horizontal streamlines estimated from ocean model reanalysis data. Results from the model reveal a mesoscale AE with first-mode baroclinic structure: a bowl-shaped anticyclonic flow in the upper ocean connected to a slant-cylinder cyclonic flow at depth, with a transition layer at depths between 400 and 700 m. It is in good agreement with moored observations but showing a shallower transition depth, suggesting a slight deficiency in the model due to limited deep-sea observations. Last, we estimate eddy heat transport at different depths and stages along the AE's path based on the model data. The result reveals that pronounced heat fluxes occur during growth stage(depths <400 m),counting for 73.03% of the total value. In the decay stage, major heat transport occurs at deeper depth(depths >700–1500 m).Dynamical characteristics suggest that the vertical structure and temporal evolution of the eddy play significant roles in basinscale movement and heat transferring. Considering that mesoscale eddies are ubiquitous in the SCS, our results support a recently-proposed mechanism, whereby upper ocean flows produce changes in the deep-sea circulation, potentially influencing boundary layer dynamics. For the first time to track and link an individual AE observed by satellite altimetry and ocean model,comparisons indicate that assimilative HYCOM outputs may be useful for examining the deep ocean properties within the SCS,especially under the impact of such an intensified surface-detected eddy.
基金supported by the National Natural Science Foundation of China(Grant Nos.41576005,91528304&41876048)
文摘Tides are the major energy source for ocean mixing, regulating the variation of oceanic circulation and sediment transport in the deep sea. Here twenty months of high-resolution current profiles, which were observed via a mooring system at a water depth of 2100 m in the northern South China Sea(SCS), are used to investigate seasonal variability in deep-sea tides.Spectral analysis shows that tides in this region are dominated by diurnal tide, and both diurnal and semidiurnal tide are vertical mode-1 dominant. Baroclinic diurnal tidal current exhibits pronounced seasonal variability, showing its kinetic energy was the strongest in summer, and the maximum depth-averaged value was up to 86.7 cm^2 s^(-2), which was about 1.5 times of that in winter and twice that in spring and autumn. In contrast, baroclinic semidiurnal tide displays no evident seasonal variability. Such seasonal variability in baroclinic tide was mainly modulated by the barotropic forcing from the Luzon Strait. On the other hand,two anticyclonic eddies and one cyclonic eddy, which originated off southwestern Taiwan in winter, crossed the mooring system.The cyclonic eddy had weak impact on current velocity in the deep sea, but the two deep-reaching anticyclonic eddies enhanced the current velocity through the full-water column by inducing strong subinertial flows. Consequently, the kinetic energy of tides was strengthened and the incoherent variance of baroclinic diurnal tide increased in winter, which contributed ~85% of the variability in diurnal tide. Meanwhile, the velocity of baroclinic diurnal tide was reduced in winter, which was attributed to the weakened stratification induced by the passage of anticyclonic eddies in the deep sea. The seasonal variability of tides in the deep northern SCS can provide a dynamic mechanism for interpreting sediment transport processes in the deep sea on different time scales.