期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Revisiting the sodium-ion storage capability of hard carbon in carbonate-based electrolytes via a sodium-metal-free protocol
1
作者 Gaopan Liu yanbing mo +5 位作者 Jiawei Chen Yu Peng Xiao Zhu Fei Wang Xiaoli Dong Yongyao Xia 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第7期2240-2247,共8页
Common evaluation methodology of sodium(Na)-containing two-electrode or three-electrode configurations overlooks the interference from highly reactive Na metal,leading to the underestimation or inconsistent performanc... Common evaluation methodology of sodium(Na)-containing two-electrode or three-electrode configurations overlooks the interference from highly reactive Na metal,leading to the underestimation or inconsistent performance of low-potential hard carbon(HC)electrodes.Herein,the trap of Na metal was systematically investigated with or without applied current,uncovering its inadequacy as the reference or counter electrode in different configurations.A Na-metal-free three-electrode protocol is proposed for evaluating the actual Na^(+)-storage capability of the typical low-potential HC electrode.By avoiding Na crosstalk and precisely controlling the working electrode's potential,the actual electrochemical performance of HC in the carbonate esterbased electrolyte can be recognized with high capacity of 222 mAh g^(-1)at 2 C and 113 mAh g^(-1)at 5 C,correcting the misunderstanding of the inferior performance of HC in coin-type half cells(68%and 50%undervaluation at 2 C and 5 C,respectively).The advanced protocol is expected to reduce misunderstandings or underestimation due to evaluation methods and to guide the development of high-performance battery materials. 展开更多
关键词 highly reactive sodium potential drift carbonate ester sodium-metal-free protocol sodium storage capability
原文传递
A weakly-solvated ether-based electrolyte for fast-charging graphite anode
2
作者 Xiao Zhu yanbing mo +3 位作者 Jiawei Chen Gaopan Liu Yonggang Wang Xiaoli Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期526-532,共7页
Weakly-solvated electrolytes(WSEs)utilizing solvents with weak coordination ability offer advantages for low-potential graphite anode owing to their facile desolvation process and anions-derived inorganic-rich solid e... Weakly-solvated electrolytes(WSEs)utilizing solvents with weak coordination ability offer advantages for low-potential graphite anode owing to their facile desolvation process and anions-derived inorganic-rich solid electrolyte interphase(SEI)film.However,these electrolytes face challenges in achieving a balance between the weak solvation affinity and high ionic conductivity,as well as between rigid inorganic-rich SEI and flexible SEI for long-term stability.Herein,we introduce 1,3-dioxolane(DOL)and lithium bis(trifluoromethanesulfonyl)-imide(LiTFSI)as functional additives into a WSE based on nonpolar cyclic ether(1,4-dioxane).The well-formulated WSE not only preserves the weakly solvated features and anion-dominated solvation sheath,but also utilizes DOL to contribute organic species for stabilizing the SEI layer.Benefitting from these merits,the optimized electrolyte enables graphite anode with excellent fast-charging performance(210 mAh/g at 5 C)and outstanding cycling stability(600 cycles with a capacity retention of 82.0%at room temperature and 400 cycles with a capacity retention of 80.4%at high temper-ature).Furthermore,the fabricated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)||graphite full cells demonstrate stable operation for 140 cycles with high capacity retention of 80.3%.This work highlights the potential of tailoring solvation sheath and interphase properties in WSEs for advanced electrolyte design in graphite-based lithium-ion batteries. 展开更多
关键词 Weakly-solvated solvent Bisalt ether-based electrolyte Graphite anode NCM||graphite battery Interfacial optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部