Single-atom photocatalysts(SAPCs)have attracted great interests due to their remarkable atom utilization efficiency,excellent activity,and selectivity,yet no application in synchronous biorefinery and water splitting....Single-atom photocatalysts(SAPCs)have attracted great interests due to their remarkable atom utilization efficiency,excellent activity,and selectivity,yet no application in synchronous biorefinery and water splitting.Here,efficient SAPCs based on atomically dispersed Zn atoms on carbon nitride(named Zn-mCN)were produced.Experiments verified that Zn-mCN has widened adsorption range of visible-light and lowered ability of electron-hole recombination,leading to excellent photocatalytic redox activity for synchronous biorefinery and water splitting to co-produce lactic acid(selectivity up to 91.0%)and hydrogen(-15898.8μmolg^(-1)h^(-1)).This system has excellent universality for small-molecule monosaccharides and macromolecular xylan.Poisoning experiments showed that h^(+),1O2,·O_(2)-and·OH can promote the simultaneous production of lactic acid and hydrogen.This work realized full utilization of whole redox reaction and provided a novel strategy for efficient and concomitant production of hydrogen and value-added chemicals from biomass-derived feedstocks aqueous solutions.展开更多
基金supported by the National Natural Science Foundation of China(No.22008018)China Postdoctoral Science Foundation(No.2020M670716)+5 种基金the Natural Science Foundation of Liaoning Province,China(No.2020-MS-272)the Foundation of Guangxi Key Laboratory of Clean Pulp&Papermaking and Pollution Control,College of Light Industry and Food Engineering,Guangxi University(No.2021KF08)Dalian City Outstanding Talent Project(No.2019RD13)the Start-up Fund for Doctoral Research of Dalian Polytechnic University(No.2020–07)the Foundation of State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology,Shandong Academy of Sciences(No.KF201914)the Foundation of Key Laboratory of State Forestry and Grassland Administration for Plant Fiber Functional Materials(No.2020KFJJ06).
文摘Single-atom photocatalysts(SAPCs)have attracted great interests due to their remarkable atom utilization efficiency,excellent activity,and selectivity,yet no application in synchronous biorefinery and water splitting.Here,efficient SAPCs based on atomically dispersed Zn atoms on carbon nitride(named Zn-mCN)were produced.Experiments verified that Zn-mCN has widened adsorption range of visible-light and lowered ability of electron-hole recombination,leading to excellent photocatalytic redox activity for synchronous biorefinery and water splitting to co-produce lactic acid(selectivity up to 91.0%)and hydrogen(-15898.8μmolg^(-1)h^(-1)).This system has excellent universality for small-molecule monosaccharides and macromolecular xylan.Poisoning experiments showed that h^(+),1O2,·O_(2)-and·OH can promote the simultaneous production of lactic acid and hydrogen.This work realized full utilization of whole redox reaction and provided a novel strategy for efficient and concomitant production of hydrogen and value-added chemicals from biomass-derived feedstocks aqueous solutions.