期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Revealing the microstructures of metal halide perovskite thin films via advancedtransmission electron microscopy
1
作者 Yeming Xian Xiaoming Wang yanfa yan 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期30-41,共12页
Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic propertie... Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices. 展开更多
关键词 PEROVSKITE DEFECT INHOMOGENEITY transmission electron MICROSCOPY
下载PDF
Spontaneous low-temperature crystallization of α-FAPbI3 for highly efficient perovskite solar cells 被引量:6
2
作者 Taiyang Zhang Qiaoling Xu +5 位作者 Feng Xu Yuhao Fu Yong Wang yanfa yan Lijun Zhang Yixin Zhao 《Science Bulletin》 SCIE EI CAS CSCD 2019年第21期1608-1616,共9页
Formamidinium lead triiodide(HC(NH2)2PbI3 or FAPbI3)is a promising light absorber for high-efficiency perovskite solar cells because of its superior light absorption range and thermal stability to CH3NH3PbI3(MAPbI3).U... Formamidinium lead triiodide(HC(NH2)2PbI3 or FAPbI3)is a promising light absorber for high-efficiency perovskite solar cells because of its superior light absorption range and thermal stability to CH3NH3PbI3(MAPbI3).Unfortunately,it is difficult to fabricate high-quality FAPbI3 thin films to surpass the MAPbI3-based cells due to easily forming unwanted but more stable yellow d-phase and thus requiring high annealing-temperature for wanted photovoltaic-active black a-phase.Herein,we reported a novel low-temperature fabrication of highly crystallized a-FAPbI3 film exhibiting uniaxial-oriented nature with large grain sizes up to 2 lm.First-principles energetic calculations predicted that this novel deposition should be ascribed to the formation of a high-energy metastable two-dimensional(2D)intermediate of MAFAPbI3 Cl followed by a spontaneous conversion to a-FAPbI3.The ions exchange reaction during this MAFAPbI3 Cl-FAPbI3 conversion account for the perovskite film uniaxial-oriented grown along the(111)direction.This large-grain and uniaxial-oriented grown a-FAPbI3 based solar cells exhibited an efficiency up to 20.4%accompanying with low density-voltage(J-V)hysteresis and high stability. 展开更多
关键词 PEROVSKITE solar cells SPONTANEOUS CRYSTALLIZATION FAPbI3 TWO-DIMENSIONAL (2D) perovskites
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部