Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic propertie...Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.展开更多
Formamidinium lead triiodide(HC(NH2)2PbI3 or FAPbI3)is a promising light absorber for high-efficiency perovskite solar cells because of its superior light absorption range and thermal stability to CH3NH3PbI3(MAPbI3).U...Formamidinium lead triiodide(HC(NH2)2PbI3 or FAPbI3)is a promising light absorber for high-efficiency perovskite solar cells because of its superior light absorption range and thermal stability to CH3NH3PbI3(MAPbI3).Unfortunately,it is difficult to fabricate high-quality FAPbI3 thin films to surpass the MAPbI3-based cells due to easily forming unwanted but more stable yellow d-phase and thus requiring high annealing-temperature for wanted photovoltaic-active black a-phase.Herein,we reported a novel low-temperature fabrication of highly crystallized a-FAPbI3 film exhibiting uniaxial-oriented nature with large grain sizes up to 2 lm.First-principles energetic calculations predicted that this novel deposition should be ascribed to the formation of a high-energy metastable two-dimensional(2D)intermediate of MAFAPbI3 Cl followed by a spontaneous conversion to a-FAPbI3.The ions exchange reaction during this MAFAPbI3 Cl-FAPbI3 conversion account for the perovskite film uniaxial-oriented grown along the(111)direction.This large-grain and uniaxial-oriented grown a-FAPbI3 based solar cells exhibited an efficiency up to 20.4%accompanying with low density-voltage(J-V)hysteresis and high stability.展开更多
文摘Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.
基金the support of the National Natural Science Foundation of China(21777096,51861145101)the support of the National Natural Science Foundation of China(61722403,11674121)+3 种基金Huoyingdong Grant(151046)the National Key Research and Development Program of China(2016YFB0201204)the support of The Initiative Postdocs Supporting Program(BX20180185)China Postdoctoral Science Foundation(2018M640387)
文摘Formamidinium lead triiodide(HC(NH2)2PbI3 or FAPbI3)is a promising light absorber for high-efficiency perovskite solar cells because of its superior light absorption range and thermal stability to CH3NH3PbI3(MAPbI3).Unfortunately,it is difficult to fabricate high-quality FAPbI3 thin films to surpass the MAPbI3-based cells due to easily forming unwanted but more stable yellow d-phase and thus requiring high annealing-temperature for wanted photovoltaic-active black a-phase.Herein,we reported a novel low-temperature fabrication of highly crystallized a-FAPbI3 film exhibiting uniaxial-oriented nature with large grain sizes up to 2 lm.First-principles energetic calculations predicted that this novel deposition should be ascribed to the formation of a high-energy metastable two-dimensional(2D)intermediate of MAFAPbI3 Cl followed by a spontaneous conversion to a-FAPbI3.The ions exchange reaction during this MAFAPbI3 Cl-FAPbI3 conversion account for the perovskite film uniaxial-oriented grown along the(111)direction.This large-grain and uniaxial-oriented grown a-FAPbI3 based solar cells exhibited an efficiency up to 20.4%accompanying with low density-voltage(J-V)hysteresis and high stability.