期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Comparative Study on Properties of PBAT/PBSA Film Modified by a Multi-Functional Epoxide Chain Extender or Benzoyl Peroxide
1
作者 yanfeng zhu Huidong Shi +3 位作者 Qing Ju Dong Zhao Yucai Shen Tingwei Wang 《Journal of Renewable Materials》 SCIE EI 2023年第3期1303-1319,共17页
Poly(butylene adipate-co-terephthalate)(PBAT)and poly(butylene succinate-co-adipate)(PBSA)blend films were prepared with different contents of a multifunctional epoxide chain extender Joncryl ADR-4468(ADR)or benzoyl p... Poly(butylene adipate-co-terephthalate)(PBAT)and poly(butylene succinate-co-adipate)(PBSA)blend films were prepared with different contents of a multifunctional epoxide chain extender Joncryl ADR-4468(ADR)or benzoyl peroxide(BPO).The long-chain-branching(LCB)introduced by ADR and branched/crosslinked entanglement induced by BPO increased melt elasticity,viscosity and compatibility,as indicated by thermal properties,rheological and morphological analyses.It was found that the elongation at break and the tensile strength were significantly improved,due to the enhancement of compatibility and the interfacial adhesion by the incorporation of ADR or BPO.The best mechanical properties were obtained in PBAT/PBSA/ADR(60/40/0.3)(A4T6A_(0.3))and PBAT/PBSA/BPO(60/40/0.9)(A4T6B_(0.9))films,respectively.With the rapid initiation of chain growth by BPO,it has significantly improved the transparency of the film.ADR and BPO can be used interchangeably in improving the comprehensive properties of PBAT/PBSA films,and it would provide more strategies for developing biodegradable materials for various applications. 展开更多
关键词 PBAT PBSA chain extend in-situ compatibilization
下载PDF
Efficient epoxidation of propylene over non-noble nickel-based catalyst promoted by alkali metals
2
作者 Wenqian Li Wanting Li +8 位作者 Xinxin Cao Longfei Chen Yibo Qin yanfeng zhu Yanfei Zhang Gai Miao Lingzhao Kong Jiong Li Xinqing Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第11期3697-3705,共9页
The application of non-noble metal catalysts in the catalytic direct gas-phase epoxidation of propylene with H2and O2to produce propylene oxide is valuable and challenging. The introduction of alkali metal promoters i... The application of non-noble metal catalysts in the catalytic direct gas-phase epoxidation of propylene with H2and O2to produce propylene oxide is valuable and challenging. The introduction of alkali metal promoters is one of the effective methods to improve the catalytic activity of catalysts. Herein, a series of alkali metal(Li, Na, K, Rb, and Cs)-promoted Ni/TS-1 catalysts were prepared to deeply understand the effect of alkali metals on the structure-activity relationship for gas-phase epoxidation of propylene. Among them, the Na-Ni/TS-1 catalyst exhibits the highest catalytic activity(propylene conversion of 7.35% and PO formation rate of 157.9 g h^(-1)kg_(cat)^(-1)) and the best stability(long-term stability exceeding 140 h at 200 ℃). X-ray absorption and photoelectron spectroscopy revealed that the electronic structure of Ni can be tuned by the addition of alkali metal promoters.NH3-TPD-MS, CO_(2)-TPD-MS, and C_(3)H_(6)-TPD-MS results indicate that the acidity of the catalyst can also be adjusted by the introduction of alkali metal, whereas the Na-Ni/TS-1 catalyst exhibits the strongest C_(3)H_(6) adsorption capacity. Thus, the suitable acid-base properties, unique electronic properties of Ni species, and the strongest propylene adsorption capacity resulted in improved propylene gas-phase epoxidation activity of Na-Ni/TS-1 catalyst. This study not only provides a new strategy for the practical application of nickel-based catalysts in the gas-phase epoxidation of propylene but also provides insights into the promoting effect of alkali metals. 展开更多
关键词 PROPYLENE EPOXIDATION Ni/TS-1 catalyst alkali metal precipitating agents
原文传递
Effective alleviation of Cd stress to microbial communities in mining reclamation soils by thiourea-modified biochar amendment 被引量:2
3
作者 yanfeng zhu Jing MA +3 位作者 Fu CHEN Ruilian YU Gongren HU Yongjun YANG 《Pedosphere》 SCIE CAS CSCD 2022年第6期866-875,共10页
Reclaimed soils in mining area usually display low fertility and present Cd stress.The amendment of modified biochar effectively fixes Cd in soils,enhances soil fertility,and reduces Cd stress in soil microorganisms.H... Reclaimed soils in mining area usually display low fertility and present Cd stress.The amendment of modified biochar effectively fixes Cd in soils,enhances soil fertility,and reduces Cd stress in soil microorganisms.However,the effect of thiourea-modified biochar(TBC)on microbial adaptability to Cd stress in mining reclamation soils is still unclear.The present work studied the Cd immobilization and microbial community changes in a mining reclamation soil displaying extreme Cd contamination under TBC amendment.The results indicated that the amendment of TBC significantly enhanced(P<0.05)soil pH,the content of available phosphorus(AP),and the activities of urease and polyphenol oxidase by 1.3%,463.4%,54.4%,and 84.0%,respectively,compared to the control without amendment.The amount of toxicity characteristic leaching procedure-extracable Cd decreased(P<0.05)by 68.0%in the TBC-amended soil compared with the unamended soil.The structure of soil microbiota was reorganized and the alpha diversity index was increased in the TBC treatment.The TBC amendment increased the relative abundances of Proteobacteria,Bacteroidota,and Zoopagomycota,which were strongly associated(P<0.01)with higher soil pH and AP.Structural equation model results demonstrated that Cd immobilization was directly influenced by soil pH,AP,and urease,and indirectly affected by bacterial structure in the TBC treatment.The TBC amendment can effectively improve the structural composition of soil bacteria under Cd stress and enhance the pathways of decreasing soil Cd availability as well.The results might facilitate the development of in-situ remediation programs in Cd-contaminated soils in the future. 展开更多
关键词 available phosphorus bacterial structure Cd immobilization enzyme activity toxicity characteristic leaching procedure-extracable Cd
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部