Let f be a fixed Maass form for SL_3(Z)with Fourier coefficients A_(f)(m,n).Let g be a Maass cusp form for SL_2(G)with Laplace eigenvalue(1/4)+k^(2) and Fourier coefficientλ_(g)(n),or a holomorphic cusp form of even ...Let f be a fixed Maass form for SL_3(Z)with Fourier coefficients A_(f)(m,n).Let g be a Maass cusp form for SL_2(G)with Laplace eigenvalue(1/4)+k^(2) and Fourier coefficientλ_(g)(n),or a holomorphic cusp form of even weight k.Denote by S_(X)(f×g,α,β)a smoothly weighted sum of A_(f)(1,n)λ_(g)(n)e(αn~β)for X 0 are fixed real numbers.The subject matter of the present paper is to prove non-trivial bounds for a sum of S_(X)(f×g,α,β)over g as k tends to∞with X.These bounds for average provide insight for the corresponding resonance barriers toward the Hypothesis S as proposed by Iwaniec,Luo,and Sarnak.展开更多
文摘Let f be a fixed Maass form for SL_3(Z)with Fourier coefficients A_(f)(m,n).Let g be a Maass cusp form for SL_2(G)with Laplace eigenvalue(1/4)+k^(2) and Fourier coefficientλ_(g)(n),or a holomorphic cusp form of even weight k.Denote by S_(X)(f×g,α,β)a smoothly weighted sum of A_(f)(1,n)λ_(g)(n)e(αn~β)for X 0 are fixed real numbers.The subject matter of the present paper is to prove non-trivial bounds for a sum of S_(X)(f×g,α,β)over g as k tends to∞with X.These bounds for average provide insight for the corresponding resonance barriers toward the Hypothesis S as proposed by Iwaniec,Luo,and Sarnak.