A simple non-isocyanate route synthesizing thermoplastic polyurethanes(TPUs) with good thermal and mechanical properties is described. Melt transurethane polycondensation of dimethyl 1,6-hexamethylene dicarbamate wi...A simple non-isocyanate route synthesizing thermoplastic polyurethanes(TPUs) with good thermal and mechanical properties is described. Melt transurethane polycondensation of dimethyl 1,6-hexamethylene dicarbamate with 1,4-butanediol and 1,6-hexanediol was conducted at different molar ratios under the catalysis of tetrabutyl titanate. A series of crystallizable non-isocyanate TPUs with high molecular weight were prepared. The TPUs were characterized by gel permeation chromatography, FT-IR, 1 H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X-ray diffraction, AFM, and tensile tests. The TPUs exhibited Mn ranging from 12 500 to 26 400 g/mol, Mw from 16 700 to 56 400 g/mol, Tm up to 151.4 °C, and initial decomposition temperature over 241.8 °C. Their tensile strength reached 42.99 MPa with a strain at break of 30.00%. TPUs constructed simply with butylene, hexylene, and urethane linkages were successfully synthesized through a non-isocyanate route.展开更多
Two kinds of cycloalkoxy silane compounds were synthesized and used as the internal electron donors (IEDs) of supported Ziegler-Natta catalyst for ethylene polymerization to produce polyethylene with broader molecul...Two kinds of cycloalkoxy silane compounds were synthesized and used as the internal electron donors (IEDs) of supported Ziegler-Natta catalyst for ethylene polymerization to produce polyethylene with broader molecular weight distribution (MWD), The effect of the structure and the amount of these IEDs on the polymerization performance was in- vestigated. The results implied that the molecular weight distribution of the obtained polyethylene could be adjusted by the incorporation of IEDs. SEM result showed that the morphology of catalyst particle was spherical and uniform in size distribution. The titanium content of these catalysts was higher, the active TiCl4 species were easily anchored on the support than that without adding IED, which was determined by ICE The GPC result confirmed that the polyethylene with broader molecular weight distribution in the range of from 23.4 to 25.6 was obtained using triethoxy-(-cyclopentyloxy)-silane (ED1) and triethoxy-(-cyclohexyloxyl)- silane (ED2) as the internal electron donors.展开更多
Multi-functional mikto-arm star polymers containing three different arms [hydrophilic, SN-38-P(OEGMAs_9)11, cationizable, SN-38-P(DMAEMA)3s and hydrophobic, SN-38-P(BMA)26] were prepared by RAFT polymerization v...Multi-functional mikto-arm star polymers containing three different arms [hydrophilic, SN-38-P(OEGMAs_9)11, cationizable, SN-38-P(DMAEMA)3s and hydrophobic, SN-38-P(BMA)26] were prepared by RAFT polymerization via an arm-first approach using a cleavable cross-linker. The star polymers were cleaved to the linear arms with tributylphosphine as a reducing agent. The decrease in molecular weight observed is consistent with the initial stars having approximately five arms, Blue fluorescence was observed when a solution of mikto-arm star was irradiated under a 365 nm light proving the retention of the SN-38 moiety during star formation by RAFT polymerization. Thus these polymer-drug conjugates can be considered as potential delivery vehicles for cancer therapy. The P(DMAEMA) arms can be quaternized using iodomethane, allowing star polymers to bind negatively charged small interfering RNA (siRNA) and potentially be used as a carrier for that material.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.21244006 and 50873013)the Beijing Natural Science Foundation(No.2182056)
文摘A simple non-isocyanate route synthesizing thermoplastic polyurethanes(TPUs) with good thermal and mechanical properties is described. Melt transurethane polycondensation of dimethyl 1,6-hexamethylene dicarbamate with 1,4-butanediol and 1,6-hexanediol was conducted at different molar ratios under the catalysis of tetrabutyl titanate. A series of crystallizable non-isocyanate TPUs with high molecular weight were prepared. The TPUs were characterized by gel permeation chromatography, FT-IR, 1 H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X-ray diffraction, AFM, and tensile tests. The TPUs exhibited Mn ranging from 12 500 to 26 400 g/mol, Mw from 16 700 to 56 400 g/mol, Tm up to 151.4 °C, and initial decomposition temperature over 241.8 °C. Their tensile strength reached 42.99 MPa with a strain at break of 30.00%. TPUs constructed simply with butylene, hexylene, and urethane linkages were successfully synthesized through a non-isocyanate route.
基金the National Natural Science Foundation of China(No.21174011)the Natural Science Foundation of Beijing,(No.2102036)the PetroChina Innovation Fund(Grant No.2011D-5006-0502)
文摘Two kinds of cycloalkoxy silane compounds were synthesized and used as the internal electron donors (IEDs) of supported Ziegler-Natta catalyst for ethylene polymerization to produce polyethylene with broader molecular weight distribution (MWD), The effect of the structure and the amount of these IEDs on the polymerization performance was in- vestigated. The results implied that the molecular weight distribution of the obtained polyethylene could be adjusted by the incorporation of IEDs. SEM result showed that the morphology of catalyst particle was spherical and uniform in size distribution. The titanium content of these catalysts was higher, the active TiCl4 species were easily anchored on the support than that without adding IED, which was determined by ICE The GPC result confirmed that the polyethylene with broader molecular weight distribution in the range of from 23.4 to 25.6 was obtained using triethoxy-(-cyclopentyloxy)-silane (ED1) and triethoxy-(-cyclohexyloxyl)- silane (ED2) as the internal electron donors.
基金the China Scholarship Council for partial financial support
文摘Multi-functional mikto-arm star polymers containing three different arms [hydrophilic, SN-38-P(OEGMAs_9)11, cationizable, SN-38-P(DMAEMA)3s and hydrophobic, SN-38-P(BMA)26] were prepared by RAFT polymerization via an arm-first approach using a cleavable cross-linker. The star polymers were cleaved to the linear arms with tributylphosphine as a reducing agent. The decrease in molecular weight observed is consistent with the initial stars having approximately five arms, Blue fluorescence was observed when a solution of mikto-arm star was irradiated under a 365 nm light proving the retention of the SN-38 moiety during star formation by RAFT polymerization. Thus these polymer-drug conjugates can be considered as potential delivery vehicles for cancer therapy. The P(DMAEMA) arms can be quaternized using iodomethane, allowing star polymers to bind negatively charged small interfering RNA (siRNA) and potentially be used as a carrier for that material.