期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Facile electrochemical surface-alloying and etching of Au wires to enable high-performance substrates for surface enhanced Raman scattering
1
作者 Yawen Zhan Guobin Zhang +8 位作者 Junda Shen Binbin Zhou Chenghao Zhao Junmei Guo Ming Wen Zhilong Tan lirong Zheng Jian Lu yang yang li 《Nano Materials Science》 EI CAS CSCD 2024年第3期305-311,共7页
Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with... Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques,greatly restricting their practical applications.A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report.Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea,in a one-pot one-step manner.X-rays absorption fine structure(XAFS)spectroscopy confirms that the AuAg alloy is induced at the surface.The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates,enabling a remarkably sensitive detection of Rhodamine B(a detection limit of 10^(-14)M,and uniform strong response throughout the substrates at 10^(-12)M). 展开更多
关键词 ELECTRODEPOSITION DEALLOYING Surface-alloyed Noble metals Surface enhanced Raman spectroscopy substrates
下载PDF
A Facile Method to Improve the High Rate Capability of Co_(3)O_(4)Nanowire Array Electrodes 被引量:12
2
作者 Hua Cheng Zhou Guang Lu +3 位作者 Jian Qiu Deng C.Y.Chung Kaili Zhang yang yang li 《Nano Research》 SCIE EI CSCD 2010年第12期895-901,共7页
The capability of fast charge and fast discharge is highly desirable for the electrode materials used in supercapacitors and lithium ion batteries.In this article,we report a simple strategy to considerably improve th... The capability of fast charge and fast discharge is highly desirable for the electrode materials used in supercapacitors and lithium ion batteries.In this article,we report a simple strategy to considerably improve the high rate capability of Co_(3)O_(4)nanowire array electrodes by uniformly loading Ag nanoparticles onto the surfaces of the Co_(3)O_(4)nanowires via the silver-mirror reaction.The highly electrically conductive silver nanoparticles function as a network for the facile transport of electrons between the current collectors(Ti substrates)and the Co_(3)O_(4)active materials.High capacity as well as remarkable rate capability has been achieved through this simple approach.Such novel Co_(3)O_(4)-Ag composite nanowire array electrodes have great potential for practical applications in pseudo-type supercapacitors as well as in lithium ion batteries. 展开更多
关键词 Cobalt oxide(Co_(3)O_(4)) nanowire arrays electrode materials SUPERCAPACITORS lithium ion batteries high rate capability
原文传递
An anti-freezing biomineral hydrogel of high strain sensitivity for artificial skin applications 被引量:3
3
作者 Junda Shen Peng Du +7 位作者 Binbin Zhou Guobin Zhang Xinxue Tang Jie Pan Bo li Jingyang Zhang Jian Lu yang yang li 《Nano Research》 SCIE EI CSCD 2022年第7期6655-6661,共7页
Mineral hydrogels have caught a lot of attention for their strong competency as artificial skin-like materials.Nonetheless,it remains a great difficulty in fulfilling in one hydrogel system a range of key functionalit... Mineral hydrogels have caught a lot of attention for their strong competency as artificial skin-like materials.Nonetheless,it remains a great difficulty in fulfilling in one hydrogel system a range of key functionalities that are needed for practical artificial skin applications,i.e.,to be biocompatible,strain-sensitive,ion-conductive,elastic and robust,anti-swelling,and anti-freezing.Here we present a such type of versatile hydrogel that is not only capable to deliver all the above-mentioned key functionalities but also highly stable.This novel hydrogel is constructed by introducing a gelatinous and amorphous multi-ionic biomineral(denoted as Mg-ACCP,containing Mg^(2+),Ca^(2+),CO_(3)^(2−),and PO_(4)^(3−))into the network of biocompatible polyvinyl alcohol(PVA)and sodium alginate(SA).The presence of Mg^(2+)and PO_(4)^(3−)in this hydrogel helps prohibit the crystallization of the biominerals,leading to significantly improved stability.The hydrogel thus obtained delivers excellent mechanical performance due to the chelation between the mineral ions and the organic matrix,and high sensitivity even to subtle pressure and strain applied,such as slight finger bending and gentle tapping.Furthermore,the novel hydrogel features high ionic conductivity,high resistance to swelling,and extraordinary anti-freezing property,holding great promise for applications in different practical scenarios,particularly in aqueous or cold environments. 展开更多
关键词 mineral hydrogel artificial skin BIOMINERALS mechanical performance
原文传递
Self-templated formation of twin-like metal-organic framework nanobricks as pre-catalysts for efficient water oxidation 被引量:2
4
作者 Fei-Xiang Ma Fucong Lyu +8 位作者 Yingxue Diao BinBin Zhou Jianghua Wu Fengwen Kang Zebiao li Xufen Xiao Peng Wang Jian Lu yang yang li 《Nano Research》 SCIE EI CSCD 2022年第4期2887-2894,共8页
Fabrication of single-crystalline metal-organic framework(MOF)hollow nanostructures with two-dimensional(2D)morphologies is a challenging task.Herein,twin-like MOF nanobricks,a quasi-hollow 2D architecture,with multi-... Fabrication of single-crystalline metal-organic framework(MOF)hollow nanostructures with two-dimensional(2D)morphologies is a challenging task.Herein,twin-like MOF nanobricks,a quasi-hollow 2D architecture,with multi-metal nodes and replaceable organic ligands,are uniformly and firmly grown on conductive Ni foam through a generic one-pot approach.The formation process of twin-like MOF nanobricks mainly includes selective epitaxial growth of Fe-rich MOF layer and simultaneously dissolution of the pre-formed Ni-rich metal-organic frameworks(MOFs),all of which can be ascribed to a special self-templated mechanism.The fantastic structural merits of twin-like MOF nanobrick arrays,featuring highly exposed active sites,remarkable electrical conductivity,and hierarchical porosities,enable this material for efficient electrocatalysis.Using bimetallic NiFe-MOFs grown on Ni foam as an example,the resultant twin-like nanobrick arrays can be directly utilized as three-dimensional(3D)integrated electrode for high-performance water oxidation in 1 M KOH with a low overpotential,fast reaction kinetics(28.5 mV·dec^(-1)),and superb stability.Interestingly,the unstable NiFe-MOFs were served as an oxygen evolution reaction(OER)pre-catalyst and the single-crystalline NiFe-MOF precursor can be in-situ topochemically regulated into porous and lowcrystalline NiFeOx nanosheets during the OER process.This work extends the hollowing strategy to fabricate hollow MOFs with 2D architectures and highlights their direct utilization for advanced electrocatalysis. 展开更多
关键词 twin-like structures metal-organic frameworks oxygen evolution reaction self-templated pre-catalysts
原文传递
Tunable ultrathin dual-phase P-doped Bi_(2)MoO_(6) nanosheets for advanced lithium and sodium storage 被引量:1
5
作者 Fucong Lyu Zhe Jia +9 位作者 Shanshan Zeng Fei-Xiang Ma Lulu Pan lizi Cheng Yan Bao ligang Sun Weihui Ou Peng Du yang yang li Jian Lu 《Nano Research》 SCIE EI CSCD 2022年第7期6128-6137,共10页
The construction of electrode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs)has gradually been an appealing and attractive technology in energy storage research field.In the present work,a fac... The construction of electrode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs)has gradually been an appealing and attractive technology in energy storage research field.In the present work,a facile strategy of synthesizing ultrathin amorphous/nanocrystal dual-phase P-doped Bi_(2)MoO_(6)(denoted as P-BiMO)nanosheets via a one-step wet-chemical synthesis approach is explored.Quite distinct from conventional two-dimensional(2D)nanosheets,our newly developed ultrathin P-BiMO nanosheets exhibit a unique tunable amorphous/nanocrystalline dual-phase structure with several compelling advantages including fast ion exchange ability and superb volume change buffer capability.The experimental results reveal that our prepared P-BiMO-6 electrode delivers an excellent reversible capacity of 509.6 mA·g^(−1) after continuous 1,500 cycles at the current densities of 1,500 mA·g^(−1) and improved rate performance for LIBs.In the meanwhile,the P-BiMO-6 electrode also shows a reversible capacity of 300.6 mA·g^(−1) after 100 cycles at 50 mA·g^(−1) when being used as the SIBs electrodes.This present work uncovers an effective dual-phase nanosheet structure to improve the performance of batteries,providing an attractive paradigm to develop superior electrode materials. 展开更多
关键词 amorphous/nanocrystalline dual-phase structure ultrathin nanosheets P-doped Bi_(2)MoO_(6) anode materials lithium-ion batteries sodium-ion batteries
原文传递
Morphology and strain control of hierarchical cobalt oxide nanowire electrocatalysts via solvent effect 被引量:2
6
作者 Xiuming Bu Xiongyi liang +7 位作者 Kingsley O.Egbo Zebiao li You Meng Quan Quan yang yang li Kin Man Yu Chi-Man Lawrence Wu Johnny C.Ho 《Nano Research》 SCIE EI CAS CSCD 2020年第11期3130-3136,共7页
Designing highly efficient and low-cost electrocatalysts for oxygen evolution reaction is important for many renewable energy applications.In particular,strain engineering has been demonstrated as a powerful strategy ... Designing highly efficient and low-cost electrocatalysts for oxygen evolution reaction is important for many renewable energy applications.In particular,strain engineering has been demonstrated as a powerful strategy to enhance the electrochemical performance of catalysts;however,the required complex catalyst preparation process restricts the implementation of strain engineering.Herein,we report a simple self-template method to prepare hierarchical porous Co_(3)O_(4)nanowires(PNWs)with tunable compressive strain via thermal-oxidation-transformation of easily prepared oxalic acid-cobalt nitrate(Co(NO_(3))_(2))composite nanowires.Based on the complementary theoretical and experimental studies,the selection of proper solvents in the catalyst preparation is not only vital for the hierarchical structural evolution of Co_(3)O_(4) but also for regulating their compressive surface strain.Because of the rich surface active sites and optimized electronic Co d band centers,the PNWs exhibit the excellent activity and stability for oxygen evolution reaction,delivering a low overpotential of 319 mV at 10 mA·cm^(−2)in 1 M KOH with a mass loading 0.553 mg·cm^(−2),which is even better than the noble metal catalyst of RuO_(2).This work provides a cost-effective example of porous Co_(3)O_(4)nanowire preparation as well as a promising method for modification of surface strain for the enhanced electrochemical performance. 展开更多
关键词 hierarchical structure morphology control compressive strain solvent effect oxygen evolution reaction
原文传递
Bestow metal foams with nanostructured surfaces via a convenient electrochemical method for improved device performance 被引量:1
7
作者 Yawen Zhan Shanshan Zeng +4 位作者 Haidong Bian Zhe li Zhengtao Xu Jian LU yang yang li 《Nano Research》 SCIE EI CAS CSCD 2016年第8期2364-2371,共8页
Metal foams have been intensively studied as three-dimensional (3-D) bulk mass-support for various applications because of their high conductivities and attractive mechanical properties. However, the relatively low ... Metal foams have been intensively studied as three-dimensional (3-D) bulk mass-support for various applications because of their high conductivities and attractive mechanical properties. However, the relatively low surface area of conventional metal foams largely limits their performance in applications such as charge storage. Here, we present a convenient electrochemical method for addressing this problem using Cu foams as an example. High surface area Cu foams are fabricated in a one-pot one-step manner by repetitive electrodeposition and dealloying treatments. The obtained Cu foams exhibit greatly improved performance for different applications like surface enhanced Raman spectroscopy (SERS) substrates and 3-D bulk supercapacitor electrodes. 展开更多
关键词 ELECTRODEPOSITION DEALLOYING metal foams surface enhanced Ramanspectroscopy substrates SUPERCAPACITORS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部