Centimeter-sized Mg65Zn30Ca5 bulk amorphous alloys were fabricated by the spark plasma sintering process from the amorphous powders with a size smaller than 5 la m prepared by ball-milling. The sintered Mg65Zn30Ca5 sa...Centimeter-sized Mg65Zn30Ca5 bulk amorphous alloys were fabricated by the spark plasma sintering process from the amorphous powders with a size smaller than 5 la m prepared by ball-milling. The sintered Mg65Zn30Ca5 samples were in an amorphous state when the spark plasma sintering was performed at a temperature of 383 K under a pressure of 600 MPa. The data of polarization curves presented that the sintered Mg65Zn30Ca5 bulk amorphous alloys exhibited higher corrosion resistance than pure Mg and AZ31B alloy owing to high content of Zn and homogeneous structure. A calcium phosphate compound layer was formed on the sintered Mg65Zn30Ca5 bulk amorphous sample after immersion in Hanks' solution, which is effective in improving corrosion resistance and bioactivity. The sintered MgZnCa bulk amorphous alloys with large dimensions broaden the potential application of bulk amorphous alloys in the biomedical fields.展开更多
基金financially supported by the Natural Science Foundation of China under Grant No. 51301091the Natural Science Foundation of Jiangsu Province Grant No. BK20151536+1 种基金the Fundamental Research Funds for the Central Universities No. AE16001the Advanced Materials Development and Integration of Novel Structured Metallic and Inorganic Materials from the Ministry of Education, Sport, Culture, Science and Technology, Japan
文摘Centimeter-sized Mg65Zn30Ca5 bulk amorphous alloys were fabricated by the spark plasma sintering process from the amorphous powders with a size smaller than 5 la m prepared by ball-milling. The sintered Mg65Zn30Ca5 samples were in an amorphous state when the spark plasma sintering was performed at a temperature of 383 K under a pressure of 600 MPa. The data of polarization curves presented that the sintered Mg65Zn30Ca5 bulk amorphous alloys exhibited higher corrosion resistance than pure Mg and AZ31B alloy owing to high content of Zn and homogeneous structure. A calcium phosphate compound layer was formed on the sintered Mg65Zn30Ca5 bulk amorphous sample after immersion in Hanks' solution, which is effective in improving corrosion resistance and bioactivity. The sintered MgZnCa bulk amorphous alloys with large dimensions broaden the potential application of bulk amorphous alloys in the biomedical fields.