A mathematical model was established to predict the carbon content of ultralow carbon steel in the Ruhrstahl-Heraeus (RH) process. The model was solved using the fourth-order Runge-Kutta method and assumed that the ...A mathematical model was established to predict the carbon content of ultralow carbon steel in the Ruhrstahl-Heraeus (RH) process. The model was solved using the fourth-order Runge-Kutta method and assumed that the volume of steel partaking in the reaction depends on the decarburization mechanism. After analyzing the decarburization process using the proposed model, the following conclusions were drawn. First, the initial carbon and oxygen contents in the RH degasser should be stabilized in the range of (200-350) × 10^-6 and (500-700) × 10^-6, respectively. Second, in the initial stage, the pressure should be reduced as quickly as possible. Third, oxygen blowing should begin as early as possible when the forced decarburization is needed and the minimum oxygen flow rate should be 0.1923 m3/(t rain). Finally, expanding the diameter of the snorkel tube from 480 to 600 mm clearly enhances the decarburization rate.展开更多
The chromium recycling from the stainless steel dust of an argon-oxygen decarburization (AOD) furnace during a hot metal pretreatment process was investigated. Experiments at different temperatures or with different...The chromium recycling from the stainless steel dust of an argon-oxygen decarburization (AOD) furnace during a hot metal pretreatment process was investigated. Experiments at different temperatures or with different amounts of AOD dusts were carried out in a laboratory furnace equipped with MoSi2 heating elements and subsequently industrial experiments were conducted in a stainless steelmaking factory, in order to study the thermodynamic mechanism of C and Si reacted with Cr2O3 to get Cr from AOD dust. The results showed that the reaction between C and Cr2 O1 occurred below 1572.18 K. Although its reducing ability was weaker than that of Si, C enabled the Cr in Cr2O3 in the AOD dust to be recycled using the Si in the slag. By combining the AOD dust added in an earlier stage, the hot metal pretreatment slag added in a later stage could not only recycle Cr from AOD dust but also remove Si, S, and P. Higher hot metal temperatures resulted in higher Cr content and lower remained P concentration in the molten iron.展开更多
基金The authors would like to acknowledge the National Natural Science Foundation of China (51574063), Funda- mental Research Funds for the Central Universities (N150204012, N152306001), and Program for Liaoning Excellent Talents in University (LJQ2015056).
文摘A mathematical model was established to predict the carbon content of ultralow carbon steel in the Ruhrstahl-Heraeus (RH) process. The model was solved using the fourth-order Runge-Kutta method and assumed that the volume of steel partaking in the reaction depends on the decarburization mechanism. After analyzing the decarburization process using the proposed model, the following conclusions were drawn. First, the initial carbon and oxygen contents in the RH degasser should be stabilized in the range of (200-350) × 10^-6 and (500-700) × 10^-6, respectively. Second, in the initial stage, the pressure should be reduced as quickly as possible. Third, oxygen blowing should begin as early as possible when the forced decarburization is needed and the minimum oxygen flow rate should be 0.1923 m3/(t rain). Finally, expanding the diameter of the snorkel tube from 480 to 600 mm clearly enhances the decarburization rate.
基金Sponsored by National Natural Science Foundation of China(51574063)National Science and Technology Support Program of China(2015BAF03B00)+1 种基金Doctor Research Startup Foundation of Liaoning Institute of Science and Technology of China(1406B06)Program for Liaoning Excellent Talents in University of China(LJQ2015056)
文摘The chromium recycling from the stainless steel dust of an argon-oxygen decarburization (AOD) furnace during a hot metal pretreatment process was investigated. Experiments at different temperatures or with different amounts of AOD dusts were carried out in a laboratory furnace equipped with MoSi2 heating elements and subsequently industrial experiments were conducted in a stainless steelmaking factory, in order to study the thermodynamic mechanism of C and Si reacted with Cr2O3 to get Cr from AOD dust. The results showed that the reaction between C and Cr2 O1 occurred below 1572.18 K. Although its reducing ability was weaker than that of Si, C enabled the Cr in Cr2O3 in the AOD dust to be recycled using the Si in the slag. By combining the AOD dust added in an earlier stage, the hot metal pretreatment slag added in a later stage could not only recycle Cr from AOD dust but also remove Si, S, and P. Higher hot metal temperatures resulted in higher Cr content and lower remained P concentration in the molten iron.