AIM: Both Hepatitis B virus (HBV) and Hepatitis C virus(HCV) are major causative agents of transfusion-associatedand community-acquired hepatitis worldwide. Developmentof a HCV vaccine as well as more effective HBV va...AIM: Both Hepatitis B virus (HBV) and Hepatitis C virus(HCV) are major causative agents of transfusion-associatedand community-acquired hepatitis worldwide. Developmentof a HCV vaccine as well as more effective HBV vaccines isan urgent task. DNA immunization provides a promisingapproach to elicit protective humoral and cellular immuneresponses against viral infection. The aim of this study is toachieve immune responses against both HCV and HBV by DNAimmunization with fusion constructs comprising various HCVE2 gene fragments fused to HBsAg gane of HBV.METHODS: C57BL/6 mice were immunized with plasmid DNAexpressing five fragments of HCV E2 fused to the gene forHBsAg respectively. After one primary and one boostingimmunizations, antibodies against HCV E2 and HBsAg weretested and subtyped in ELISA. Splenic cytokine expressionof IFN-γ and IL-10 was analyzed using an RT-PCR assay.Post-immune mouse antisera also were tested for theirability to capture HCV viruses in the serum of a hepatitis Cpatient in vitro.RESUTLTS: After immunization, antibodies against bothHBsAg and HCV E2 were detected in mouse sera, withIgG2a being the dominant immunoglobulin sub-class. High-level expression of INF-γ was deuetected in cultured splenic cells.Mouse antisera against three of the five fusion constructs wereable to capture HCV viruses in an in vitro assay.CONCLUSION: The results indicate that these fusionconstructs could efficiently elicit humoral and Th1 dominantcellular immune responses against both HBV S and HCV E2antigens in DNA-immunized mice. They thus could serve ascandidates for a bivalent vaccine against HBV and HCVinfection. In addition, the capacity of mouse antisera againstthree of the five fusion constnucts to capture HCV virusses invitro suggested that neutralizing epitopes may be present inother regions of E2 besides the hypervariable region 1.展开更多
基金the National High-Technology Program of China,No.863-102-07-02-02
文摘AIM: Both Hepatitis B virus (HBV) and Hepatitis C virus(HCV) are major causative agents of transfusion-associatedand community-acquired hepatitis worldwide. Developmentof a HCV vaccine as well as more effective HBV vaccines isan urgent task. DNA immunization provides a promisingapproach to elicit protective humoral and cellular immuneresponses against viral infection. The aim of this study is toachieve immune responses against both HCV and HBV by DNAimmunization with fusion constructs comprising various HCVE2 gene fragments fused to HBsAg gane of HBV.METHODS: C57BL/6 mice were immunized with plasmid DNAexpressing five fragments of HCV E2 fused to the gene forHBsAg respectively. After one primary and one boostingimmunizations, antibodies against HCV E2 and HBsAg weretested and subtyped in ELISA. Splenic cytokine expressionof IFN-γ and IL-10 was analyzed using an RT-PCR assay.Post-immune mouse antisera also were tested for theirability to capture HCV viruses in the serum of a hepatitis Cpatient in vitro.RESUTLTS: After immunization, antibodies against bothHBsAg and HCV E2 were detected in mouse sera, withIgG2a being the dominant immunoglobulin sub-class. High-level expression of INF-γ was deuetected in cultured splenic cells.Mouse antisera against three of the five fusion constructs wereable to capture HCV viruses in an in vitro assay.CONCLUSION: The results indicate that these fusionconstructs could efficiently elicit humoral and Th1 dominantcellular immune responses against both HBV S and HCV E2antigens in DNA-immunized mice. They thus could serve ascandidates for a bivalent vaccine against HBV and HCVinfection. In addition, the capacity of mouse antisera againstthree of the five fusion constnucts to capture HCV virusses invitro suggested that neutralizing epitopes may be present inother regions of E2 besides the hypervariable region 1.