Discharged hospital wastewater contains various pathogenic microorganisms,antibiotic groups,toxic organic compounds,radioactive elements,and ionic pollutants.These contaminants harm the environment and human health ca...Discharged hospital wastewater contains various pathogenic microorganisms,antibiotic groups,toxic organic compounds,radioactive elements,and ionic pollutants.These contaminants harm the environment and human health causing the spread of disease.Thus,effective treatment of hospital wastewater is an urgent task for sustainable development.Membranes,with controllable porous and nonporous structures,have been rapidly developed for molecular separations.In particular,membrane bioreactor(MBR)technology demonstrated high removal efficiency toward organic compounds and low waste sludge production.To further enhance the separation efficiency and achieve material recovery from hospital waste streams,novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes(non hydrophilic ultrafiltration/microfiltration)into the MBR units(hybrid MBRs)or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step(integrated MBR-membrane systems).However,there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment,and analysis on its major challenges and future trends.This review started with an overview of main pollutants in common hospital wastewater,followed by an understanding on the key performance indicators/criteria in MBR membranes(i.e.,solute selectivity)and processes(e.g.,fouling).Then,an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts,and applications correlated with wastewater sources,with a particular focus on hospital wastewaters.It is anticipated that this review will shed light on the knowledge gaps in the field,highlighting the potential contribution of hybrid MBRs and integrated MBRmembrane systems toward global epidemic prevention.展开更多
基金support provided by the China Scholarship Council(CSC)of the Ministry of Education,China(CSC No.201708330281).
文摘Discharged hospital wastewater contains various pathogenic microorganisms,antibiotic groups,toxic organic compounds,radioactive elements,and ionic pollutants.These contaminants harm the environment and human health causing the spread of disease.Thus,effective treatment of hospital wastewater is an urgent task for sustainable development.Membranes,with controllable porous and nonporous structures,have been rapidly developed for molecular separations.In particular,membrane bioreactor(MBR)technology demonstrated high removal efficiency toward organic compounds and low waste sludge production.To further enhance the separation efficiency and achieve material recovery from hospital waste streams,novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes(non hydrophilic ultrafiltration/microfiltration)into the MBR units(hybrid MBRs)or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step(integrated MBR-membrane systems).However,there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment,and analysis on its major challenges and future trends.This review started with an overview of main pollutants in common hospital wastewater,followed by an understanding on the key performance indicators/criteria in MBR membranes(i.e.,solute selectivity)and processes(e.g.,fouling).Then,an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts,and applications correlated with wastewater sources,with a particular focus on hospital wastewaters.It is anticipated that this review will shed light on the knowledge gaps in the field,highlighting the potential contribution of hybrid MBRs and integrated MBRmembrane systems toward global epidemic prevention.