期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Embracing the era of neuromorphic computing 被引量:1
1
作者 yanghao wang Yuchao Yang +1 位作者 Yue Hao Ru Huang 《Journal of Semiconductors》 EI CAS CSCD 2021年第1期5-7,共3页
In recent years,deep learning has made tremendous achievements in computer vision,natural language processing,man-machine games and so on,where artificial intelligence can reach or go beyond the level of human beings.... In recent years,deep learning has made tremendous achievements in computer vision,natural language processing,man-machine games and so on,where artificial intelligence can reach or go beyond the level of human beings.However,behind so many glories,some serious challenges exist in the bottom hardware,hindering the further development of Artificial Intelligence. 展开更多
关键词 HARDWARE hinder artificial
下载PDF
神经形态器件研究进展与未来趋势 被引量:7
2
作者 王洋昊 刘昌 +1 位作者 黄如 杨玉超 《科学通报》 EI CAS CSCD 北大核心 2020年第10期904-915,共12页
大数据时代的信息爆炸、摩尔定律的逐渐减缓和"万物互联"的最终愿景使得发展高性能的非传统计算迫在眉睫. 21世纪以来,神经形态计算以高度的并行、极低的功耗和存算一体的特征受到了广泛的关注.其中,具有独特物理机制的神经... 大数据时代的信息爆炸、摩尔定律的逐渐减缓和"万物互联"的最终愿景使得发展高性能的非传统计算迫在眉睫. 21世纪以来,神经形态计算以高度的并行、极低的功耗和存算一体的特征受到了广泛的关注.其中,具有独特物理机制的神经形态器件是神经形态计算硬件的基本组成单元,对新型非冯·诺依曼架构芯片的研发乃至类脑智能的最终实现都具有重要意义.本文重点介绍了神经形态器件的研究进展和未来研发的趋势.研究低功耗的神经形态器件与集成方法,提高突触器件的线性度、对称性和开关比以及从动力学角度模拟生物启发的神经系统是该领域的研究热点. 展开更多
关键词 神经形态器件 类脑计算 人工智能 人工突触 人工神经元 忆阻器
原文传递
Recommender systems based on ranking performance optimization 被引量:1
3
作者 Richong ZHANG Han BAO +2 位作者 Hailong SUN yanghao wang Xudong LIU 《Frontiers of Computer Science》 SCIE EI CSCD 2016年第2期270-280,共11页
The rapid development of online services and information overload has inspired the fast development of recommender systems, among which collaborative filtering algorithms and model-based recommendation approaches are ... The rapid development of online services and information overload has inspired the fast development of recommender systems, among which collaborative filtering algorithms and model-based recommendation approaches are wildly exploited. For instance, matrix factorization (MF) demonstrated successful achievements and advantages in assisting internet users in finding interested information. These existing models focus on the prediction of the users' ratings on unknown items. The performance is usually evaluated by the metric root mean square error (RMSE). However, achieving good performance in terms of RMSE does not always guarantee a good ranking performance. Therefore, in this paper, we advocate to treat the recommendation as a ranking problem. Normalized discounted cumulative gain (NDCG) is chosen as the optimization target when evaluating the ranking accuracy. Specifically, we present three ranking-oriented recommender algorithms, NSME AdaMF and AdaNSME NSMF builds a NDCG approximated loss function for Matrix Factorization. AdaMF is based on an algorithm by adaptively combining component MF recommenders with boosting method. To combine the advantages of both algorithms, we propose AdaNSME which is a hybird of NSMF and AdaME and show the superiority in both ranking accuracy and model generalization. In addition, we compare our proposed approaches with the state-of-the-art recommendation algorithms. The comparison studies confirm the advantage of our proposed approaches. 展开更多
关键词 recommender system matrix factorization learning to rank
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部