期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Polydopamine-coated i-motif DNA/Gold nanoplatforms for synergistic photothermal-chemotherapy
1
作者 Bo Chen Lan Mei +6 位作者 Rangrang Fan Di Chuan yangmei ren Min Mu Haifeng Chen Bingwen Zou Gang Guo 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第2期49-60,共12页
The combination of photothermal therapywith chemotherapy has gradually developed into promising cancer therapy.Here,a synergistic photothermal-chemotherapy nanoplatform based on polydopamine(PDA)-coated gold nanoparti... The combination of photothermal therapywith chemotherapy has gradually developed into promising cancer therapy.Here,a synergistic photothermal-chemotherapy nanoplatform based on polydopamine(PDA)-coated gold nanoparticles(AuNPs)were facilely achieved via the in situ polymerization of dopamine(DA)on the surface of AuNPs.This nanoplatform exhibited augmented photothermal conversion efficiency and enhanced colloidal stability in comparison with uncoated PDA shell AuNPs.The i-motif DNA nanostructure was assembled on PDA-coated AuNPs,which could be transformed into a C-quadruplex structure under an acidic environment,showing a characteristic pH response.The PDA shell served as a linker between the AuNPs and the i-motif DNA nanostructure.To enhance the specific cellular uptake,the AS1411 aptamer was introduced to the DNA nanostructure employed as a targeting ligand.In addition,Dox-loaded NPs(DAu@PDA-AS141)showed the pH/photothermal-responsive release of Dox.The photothermal effect of DAu@PDA-AS141 elicited excellent photothermal performance and efficient cancer cell inhibition under 808 nm near-infrared(NIR)irradiation.Overall,these results demonstrate that the DAu@PDA-AS141 nanoplatform shows great potential in synergistic photothermal-chemotherapy. 展开更多
关键词 Gold nanoparticles POLYDOPAMINE I-MOTIF AS1411 aptamer Photothermal-chemotherapy
下载PDF
Multifunctional metal-polyphenol nanocomposite for melanoma targeted photo/chemodynamic synergistic therapy
2
作者 Di Chuan Huan Hou +7 位作者 Yuelong Wang Min Mu Jinglun Li yangmei ren Na Zhao Bo Han Haifeng Chen Gang Guo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第21期159-168,共10页
Due to the hypoxic state of the tumor microenvironment(TME),photodynamic therapy(PDT)suffers from insufficient ROS production.The metal-polyphenol network-mediated Fenton reaction can generate reac-tive oxygen species... Due to the hypoxic state of the tumor microenvironment(TME),photodynamic therapy(PDT)suffers from insufficient ROS production.The metal-polyphenol network-mediated Fenton reaction can generate reac-tive oxygen species(ROS)by consuming H_(2)O_(2) in TME,improving the inadequate ROS generation problem of PDT.Therefore,synergistic therapy combining PDT and Fenton response-based CDT is a promising ap-proach for cancer treatment.Herein,a metal-polyphenol nanocomposite was deposited with gallic acid grafted hyaluronic acid and Fe^(3+) to contrast a Ce6 nano-delivery system(Ce6@HSF NPs)for melanoma synergistic therapy.Ce6@HSF NPs could be used as a Fenton reagent to induce the·OH production and enhance the PDT effect of Ce6 to a certain extent.After 4 h of cellular uptake,the fluorescence intensity of Ce6 in the Ce6@HSF NPs group was higher than 3 times that in the Ce6 group.The intracellular ROS generation level of the Ce6@HSF NPs(L)group combining CDT and PDT was higher than that of the Ce6 group and Ce6@HSF NPs group.In vitro and in vivo anti-melanoma studies show that Ce6@HSF NPs(L)group exhibited better anti-melanoma than other groups.Together,Ce6@HSF NPs provide a promising synergistic treatment potential for melanoma. 展开更多
关键词 Photodynamic therapy Chemodynamic therapy Fenton reaction Metal-polyphenol network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部