期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
V2O5 Nanospheres with Mixed Vanadium Valences as High Electrochemically Active Aqueous Zinc-Ion Battery Cathode 被引量:17
1
作者 Fei Liu Zixian Chen +5 位作者 Guozhao Fang Ziqing Wang yangsheng cai Boya Tang Jiang Zhou Shuquan Liang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第2期98-108,共11页
AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nan... AV4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor,and its zinc-ion storage performance was evaluated.The products are hollow spheres consisting of nanoflakes.The V4+-V2O5 cathode exhibits a prominent cycling performance,with a specific capacity of 140 mAhg-1 after 1000 cycles at 10 A g.1,and an excellent rate capability.The good electrochemical performance is attributed to the presence of V4+,which leads to higher electrochemical activity,lower polarization,faster ion diffusion,and higher electrical conductivity than V2O5 without V4+.This engineering strategy of valence state manipulation may pave the way for designing high-performance cathodes for elucidating advanced battery chemistry. 展开更多
关键词 V2O5 MIXED valences Hollow sphere Long-cycle-life AQUEOUS zinc-ion BATTERY
下载PDF
Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application 被引量:13
2
作者 yangsheng cai Guozhao Fang +5 位作者 Jiang Zhou Sainan Liu Zhigao Luo Anqiang Pan Guozhong Cao I Shuquan Liang 《Nano Research》 SCIE EI CAS CSCD 2018年第1期449-463,共15页
Vanadium oxides with a layered structure are promising candidates for both lithium-ion batteries and sodium-ion batteries (SIBs). The self-template approach, which involves a transformation from metal-organic framew... Vanadium oxides with a layered structure are promising candidates for both lithium-ion batteries and sodium-ion batteries (SIBs). The self-template approach, which involves a transformation from metal-organic frameworks (MOFs) into porous metal oxides, is a novel and effective way to achieve desirable electrochemical performance. In this stud~ porous shuttle-like vanadium oxides (i.e., V205, V203/C) were successfully prepared by using MIL-88B (V) as precursors with a specific calcination process. As a proof-of-concept application, the as- prepared porous shuttle-like VaOdC was used as an anode material for SIBs. The porous shuttle-like V203/C, which had an inherent layered structure with metallic behavior, exhibited excellent electrochemical properties. Remarkable rate capacities of 417, 247, 202, 176, 164, and 149 mAh.g-1 were achieved at current densities of 50, 100, 200, 500, 1,000, and 2,000 mA.g-1, respectively. Under cycling at 2 A.g-1, the specific discharge capacity reached 181 mAh.g-1, with a low capacity fading rate of 0.032% per cycle after 1,000 cycles. Density functional theory calculation results indicated that Na ions preferred to occupy the interlamination rather than the inside of each layer in the V203. Interestingly, the special layered structure with a skeleton of dumbbell-like V-V bonds and metallic behavior was maintained after the insertion of Na ions, which was beneficial for the cycle performance. We consider that the MOF precursor of MIL-88B (V) can be used to synthesize other porous V-based materials for various applications. 展开更多
关键词 vanadium oxides metal-organic frameworks porous structure density functional theory(DFT) calculation sodium-ion batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部