期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Influence of the rolling-resistance-based shape of coarse particles on the shear responses of granular mixtures 被引量:5
1
作者 yangui zhu Zhihong Nie Jian Gong 《Particuology》 SCIE EI CAS CSCD 2020年第5期67-82,共16页
Shear responses of dense granular mixtures of spherical coarse particles with the rolling resistance and spherical fine particles are studied via triaxial compression tests using the discrete element method.The macros... Shear responses of dense granular mixtures of spherical coarse particles with the rolling resistance and spherical fine particles are studied via triaxial compression tests using the discrete element method.The macroscale responses(shear strength and dilatancy)are examined.Comparing the results with those in the literature indicates that granular mixtures with a rolling resistance coefficient of 0.5 have similar macroscale responses to those of gravel-shaped coarse particle mixtures.We quantify the microscale responses including the percentage contributions of contact types,partial coordination number,average particle rotation,average degree of interlocking,and local structural properties,A detailed analysis of the force-fabric anisotropy reveals the mechanisms of the variations in the shear strength with the rolling resistance coefficient and the fines content.The mechanism of the variation in the shear strength with the fines content for granular mixtures with a rolling resistance coefficient of 0.5 is different from that for gravel-shaped coarse particle mixtures.Finally,we find that a rolling resistance linear model weakens the linear relationship between the stress ratio and the fabric anisotropy of strong and non-sliding contacts when the fines content is 30% and 40%. 展开更多
关键词 Granular mixture Rolling resistance Particle shape Fines content Macroscale and microscale responses ANISOTROPY
原文传递
Shear behaviours of cohesionless mixed soils using the DEM:The influence of coarse particle shape 被引量:2
2
作者 yangui zhu Jian Gong Zhihong Nie 《Particuology》 SCIE EI CAS CSCD 2021年第2期151-165,共15页
The coarse particles in mixed soils can be cobbles or gravels,with the main difference being their roundness(an indicator describing particle shape characteristics at an intermediate scale).The influence of coarse par... The coarse particles in mixed soils can be cobbles or gravels,with the main difference being their roundness(an indicator describing particle shape characteristics at an intermediate scale).The influence of coarse particle shape(i.e.,roundness)on the macroscopic and microscopic shear behaviours of cohesionless mixed soils with various fines contents(FCs)was investigated via the discrete element method in this study.The shapes of coarse particles were formed using the rotation-invariant spherical harmonic method proposed by previous investigators.An equation was proposed to predict the initial void ratios of samples in this study.A decrease in the roundness of coarse particles can increase the peak friction angle(FC≤40%)and critical friction angle(FC≤30%).As the roundness of coarse particles decreases,the peak dilatancy angle initially increases and then decreases(FC≤20%).Furthermore,it was found that the roundness of coarse particles hardly affects the classification of cohesionless mixed soils,as determined by probing the percentage contributions of coarse-coarse,coarse-fine,and fine-fine contacts.When cohesionless mixed soils change from an underfilled structure to an interactive-underfilled structure at the critical state,the main forms of coarse-coarse contacts were discovered.Additionally,the force-fabric anisotropy mechanisms of the influences of the roundness and rolling resistance coefficient of coarse particles on the shear strengths of cohesionless mixed soils were found to be different. 展开更多
关键词 Cohesionless mixed soils Particle shape ROUNDNESS Shear behaviours Discrete element method
原文传递
DEM investigation of strain behaviour and force chain evolution of gravel-sand mixtures subjected to cyclic loading
3
作者 Zhihong Nie Qun Qi +1 位作者 Xiang Wang yangui zhu 《Particuology》 SCIE EI CAS CSCD 2022年第9期13-28,共16页
The strain characteristic and load transmission of mixed granular matter are different from those of homogeneous granular matter.Cyclic loading renders the mechanical behaviours of mixed granular mat-ter more complex.... The strain characteristic and load transmission of mixed granular matter are different from those of homogeneous granular matter.Cyclic loading renders the mechanical behaviours of mixed granular mat-ter more complex.To investigate the dynamic responses of gravel-sand mixtures,the discrete element method(DEM)was used to simulate the cyclic loading of gravel-sand mixtures with low fines contents.Macroscopically,the evolution of the axial strain and volumetric strain was investigated.Mesoscopi-cally,the coordination number and contact force anisotropy were studied,and the evolution of strong and weak contacts was explored from two dimensions of loading time and local space.The simulation results show that increasing fines content can accelerate the development of the axial strain and vol-umetric strain but has little effect on the evolution of contact forces.Strong contacts tend to develop along the loading boundary,presenting the spatial difference.Weak contacts are firstly controlled by confining pressure and then controlled by axial stress,while strong contacts are mainly controlled by axial stress throughout the whole cyclic loading.Once compression failure occurs,the release of axial stress causes the reduction of strong contact proportion in all local regions.These findings are helpful to understand the dynamic responses of gravel-sand mixtures,especially in deformation behaviours and the Spatio-temporal evolution of contact forces. 展开更多
关键词 Gravel-sand mixture Cyclic loading DEM Strain Contact force
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部