Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution rea...Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).Hereby,a polyvinylidene fluoride(PVDF)-assisted pyrolysis strategy is proposed to develop a novel corrugated plate-like bifunctional electrocatalyst using two-dimensional zeolitic imidazolate frameworks(2D ZIF-67)as the precursor.The employed PVDF plays an important role in inheriting the original 2D structure of ZIF-67 and modulating the composition of the final products.As a result,a corrugated plate-like electrocatalyst,high-density Co nanoparticles decorated 2D Co,N,and F tri-doped carbon nanosheets,can be obtained.The acquired electrocatalyst enables efficient active sites and rapid mass transfer simultaneously,thus showing appreciable electrocatalytic performance for rechargeable Zn-air batteries.Undoubtedly,our proposed strategy offers a new perspective to the design of advanced oxygen electrocatalysts.展开更多
Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and ...Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and polysulfide shuttling effect of S cathodes severely hamper the practical performance of LSBs.Herein,in situ-generated single layer MXene nanosheet/hierarchical porous carbonized wood fiber(MX/PCWF)composites are prepared via a nonhazardous eutectic activation strategy coupled with pyrolysis-induced gas diffusion.The unique architecture,wherein single layer MXene nanosheets are constructed on carbonized wood fiber walls,ensures rapid polysulfide conversion and continuous electron transfer for redox reactions.The C-Ti-C bonds formed between MXene and PCWF can considerably expedite the conversion of polysulfides,effectively suppressing the shuttle effect.An impressive capacity of 1301.1 m A h g^(-1)at 0.5 C accompanied by remarkable stability is attained with the MX/PCWF host,as evidenced by the capacity maintenance of 722.6 m A h g^(-1)after 500 cycles.Notably,the MX/PCWF/S cathode can still deliver a high capacity of 886.8 m A h g^(-1)at a high S loading of 5.6 mg cm^(-2).The construction of two-dimensional MXenes on natural wood fiber walls offers a competitive edge over S-based cathode materials and demonstrates a novel strategy for developing high-performance batteries.展开更多
This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results...This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results limited in bidirectional networks and disturbance-free motions,this paper handles the circular formation flight control problem with both directed network and spatiotemporal disturbance with the knowledge of its upper bound.Distinguishing from the design of a common Lyapunov fiunction for bidirectional cases,we separately design the control for the circular tracking subsystem and the formation keeping subsystem with the circular tracking error as input.Then the whole control system is regarded as a cascade connection of these two subsystems,which is proved to be stable by input-tostate stability(ISS)theory.For the purpose of encountering the external disturbance,the backstepping technology is introduced to design the control inputs of each UAV pointing to North and Down along the special sphere(say,the circular tracking control algorithm)with the help of the switching function.Meanwhile,the distributed linear consensus protocol integrated with anther switching anti-interference item is developed to construct the control input of each UAV pointing to east along the special sphere(say,the formation keeping control law)for formation keeping.The validity of the proposed control law is proved both in the rigorous theory and through numerical simulations.展开更多
Transition metal compound(TMC)/carbon hybrids,as prospering electrocatalyst,have attracted great attention in the field of oxygen reduction reaction(ORR).Their morphology,structure and composition often play a crucial...Transition metal compound(TMC)/carbon hybrids,as prospering electrocatalyst,have attracted great attention in the field of oxygen reduction reaction(ORR).Their morphology,structure and composition often play a crucial role in determining the ORR performance.In this work,we for the first time report the successful fabrication of porous core-shell Fe_(1-x)S@N,S co-doped carbon(Fe_(1-x)S@NSC-t,t represents etching time)by a novel in-situ self-template induced strategy using Fe3O4 nanospheres and pyrrole as sacrificial self-template.The post-polymerization of pyrrole can be accomplished by the Fe^(3+)released through the etching of Fe_(3)O_(4) by HCl acid.Thus,the etching time has a significant effect on the morphology,structure,composition a nd ORR performance of Fe_(1-x)S@NSC-t.Based on the cha racterizations,we find Fe_(1-x)S@NSC-24 can realize effective and balanced combination of Fe_(1-x)S and NSC,possessing porous core-shell architecture,optimized structure defect,specific surface area and doped heteroatoms configurations(especially for pyridinic N,graphitic N and Fe-N structure).These features thus lead to outstanding catalytic activity and cycling stability towards ORR.Our work provides a good guidance on the design of TMC/carbon-based electrodes with unique stable morphology and optimized structure and composition.展开更多
This article considers the problem of directing a family of fully actuated surface vessels to cooperatively follow a set of convex and closed orbits with a time-invariant reference orbital velocity and maintain attitu...This article considers the problem of directing a family of fully actuated surface vessels to cooperatively follow a set of convex and closed orbits with a time-invariant reference orbital velocity and maintain attitude synchronization. A consensusbased adaptive control law under a bidirectional communication topology is proposed to estimate the reference orbital velocity so that the restriction that every vessel in the family must have access to the reference in the previous literature can be removed.The assumption of nonzero total linear speed of each vessel is removed by the use of potential function. Simulation results demonstrate the effectiveness of the proposed approach.展开更多
ZnS is a promising material for lithium-ion battery anodes due to its abundant natural resources,simplicity of synthesis,and high theoretical lithium storage capacity.However,it needs to be optimized for its low condu...ZnS is a promising material for lithium-ion battery anodes due to its abundant natural resources,simplicity of synthesis,and high theoretical lithium storage capacity.However,it needs to be optimized for its low conductivity and volume efect during the charge–discharge process.The traditional method of combining with carbonaceous materials is usually laborious,and the required sulfuration process may possibly result in the destruction of materials morphology.In this study,hybrid materials formed by the combination of ZnS nanocrystals and high porosity carbon fbers were synthesized by one-step electrospinning using zinc diethyldithiocarbamate and polyacrylonitrile as raw materials and poly(ethylene glycol)—block-poly(propylene glycol)—block-poly(ethylene glycol)as template.The method is simple and avoids the infuence of sulfuration process on the morphology of materials.The composite presents a specifc capacity of 592.2 mAh g^(−1) under a current density of 1 A g^(−1) after 1000 cycles.The porous structure signifcantly decreases the difusion mean-free path of Li+and inhibits the volume efect associated with the lithium storage process of ZnS.In addition,the 3D cross-linked carbon fbers improve the conductivity of materials.This study can serve as an inspiration for the development of other lithium storage composites.展开更多
Neuropathic pain is a chronic debilitating symptom characterized by spontaneous pain and mechanical allodynia. It occurs in distinct forms, including brushevoked dynamic and filament-evoked punctate mechanical allodyn...Neuropathic pain is a chronic debilitating symptom characterized by spontaneous pain and mechanical allodynia. It occurs in distinct forms, including brushevoked dynamic and filament-evoked punctate mechanical allodynia. Potassium channel 2.1(Kir2.1), which exhibits strong inward rectification, is and regulates the activity of lamina I projection neurons. However, the relationship between Kir2.1 channels and mechanical allodynia is still unclear. In this study, we first found that pretreatment with ML133, a selective Kir2.1 inhibitor, by intrathecal administration, preferentially inhibited dynamic, but not punctate, allodynia in mice with spared nerve injury(SNI).Intrathecal injection of low doses of strychnine, a glycine receptor inhibitor, selectively induced dynamic, but not punctate allodynia, not only in na¨?ve but also in ML133-pretreated mice. In contrast, bicuculline, a GABAAreceptor antagonist, induced only punctate, but not dynamic,allodynia. These results indicated the involvement of glycinergic transmission in the development of dynamic allodynia. We further found that SNI significantly suppressed the frequency, but not the amplitude, of the glycinergic spontaneous inhibitory postsynaptic currents(gly-sIPSCs) in neurons on the lamina II-III border of the spinal dorsal horn, and pretreatment with ML133 prevented the SNI-induced gly-sIPSC reduction. Furthermore, 5 days after SNI, ML133, either by intrathecal administration oracute bath perfusion, and strychnine sensitively reversed the SNI-induced dynamic, but not punctate, allodynia and the gly-sIPSC reduction in lamina IIi neurons, respectively.In conclusion, our results suggest that blockade of Kir2.1 channels in the spinal dorsal horn selectively inhibits dynamic, but not punctate, mechanical allodynia by enhancing glycinergic inhibitory transmission.展开更多
This paper presents applications of the continuous feedback method to achieve path-following and a formation moving along the desired orbits within a finite time.It is assumed that the topology for the virtual leader ...This paper presents applications of the continuous feedback method to achieve path-following and a formation moving along the desired orbits within a finite time.It is assumed that the topology for the virtual leader and followers is directed.An additional condition of the so-called barrier function is designed to make all agents move within a limited area.A novel continuous finite-time path-following control law is first designed based on the barrier function and backstepping.Then a novel continuous finite-time formation algorithm is designed by regarding the path-following errors as disturbances.The settling-time properties of the resulting system are studied in detail and simulations are presented to validate the proposed strategies.展开更多
Clinical therapeutics for the regeneration of osteochondral defects(OCD)in the early stages of osteoarthritis remain an enormous challenge in orthopaedics.For in-depth studies of tissue engineering and regenerative me...Clinical therapeutics for the regeneration of osteochondral defects(OCD)in the early stages of osteoarthritis remain an enormous challenge in orthopaedics.For in-depth studies of tissue engineering and regenerative medicine in terms of OCD treatment,the utility of an optimal OCD animal model is crucial for assessing the effects of implanted biomaterials on the repair of damaged osteochondral tissues.Currently,the most frequently used in vivo animal models for OCD regeneration include mice,rats,rabbits,dogs,pigs,goats,sheep,horses and nonhuman primates.However,there is no single“gold standard”animal model to accurately recapitulate human disease in all aspects,thus understanding the benefits and limitations of each animal model is critical for selecting the most suitable one.In this review,we aim to elaborate the complex pathological changes in osteoarthritic joints and to summarise the advantages and limitations of OCD animal models utilised for biomaterial testing along with the methodology of outcome assessment.Furthermore,we review the surgical procedures of OCD creation in different species,and the novel biomaterials that promote OCD regeneration.Above all,it provides a significant reference for selection of an appropriate animal model for use in preclinical in vivo studies of biomaterial-assisted osteochondral regeneration in osteoarthritic joints.展开更多
基金supported by the National Natural Science Foundation of China (No.21908049,52274298,and 51974114)Hunan Provincial Natural Science Foundation of China (No.2022JJ40035,2020JJ4175,2024JJ4022,2023JJ30277)+2 种基金Science and Technology Talents Lifting Project of Hunan Province (No.2022TJ-N16)Open Fund of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing (K1:24-09)Postdoctoral Fellowship Program (No.GZC20233205)。
文摘Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).Hereby,a polyvinylidene fluoride(PVDF)-assisted pyrolysis strategy is proposed to develop a novel corrugated plate-like bifunctional electrocatalyst using two-dimensional zeolitic imidazolate frameworks(2D ZIF-67)as the precursor.The employed PVDF plays an important role in inheriting the original 2D structure of ZIF-67 and modulating the composition of the final products.As a result,a corrugated plate-like electrocatalyst,high-density Co nanoparticles decorated 2D Co,N,and F tri-doped carbon nanosheets,can be obtained.The acquired electrocatalyst enables efficient active sites and rapid mass transfer simultaneously,thus showing appreciable electrocatalytic performance for rechargeable Zn-air batteries.Undoubtedly,our proposed strategy offers a new perspective to the design of advanced oxygen electrocatalysts.
基金financially supported by the National Natural Science Foundation of China(31890771)the Young Elite Scientists Sponsorship Program from the National Forestry and Grassland Administration of China(2019132614)+1 种基金the Science and Technology Innovation Program of Hunan Province(2022RC3054)the Hunan Provincial Innovation Foundation for Postgraduate(CX20230758)。
文摘Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and polysulfide shuttling effect of S cathodes severely hamper the practical performance of LSBs.Herein,in situ-generated single layer MXene nanosheet/hierarchical porous carbonized wood fiber(MX/PCWF)composites are prepared via a nonhazardous eutectic activation strategy coupled with pyrolysis-induced gas diffusion.The unique architecture,wherein single layer MXene nanosheets are constructed on carbonized wood fiber walls,ensures rapid polysulfide conversion and continuous electron transfer for redox reactions.The C-Ti-C bonds formed between MXene and PCWF can considerably expedite the conversion of polysulfides,effectively suppressing the shuttle effect.An impressive capacity of 1301.1 m A h g^(-1)at 0.5 C accompanied by remarkable stability is attained with the MX/PCWF host,as evidenced by the capacity maintenance of 722.6 m A h g^(-1)after 500 cycles.Notably,the MX/PCWF/S cathode can still deliver a high capacity of 886.8 m A h g^(-1)at a high S loading of 5.6 mg cm^(-2).The construction of two-dimensional MXenes on natural wood fiber walls offers a competitive edge over S-based cathode materials and demonstrates a novel strategy for developing high-performance batteries.
基金supported in part by the National Natural Science Foundation of China(61673106)the Natural Science Foundation of Jiangsu Province(BK20171362)the Fundamental Research Funds for the Central Universities(2242019K40024)
文摘This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results limited in bidirectional networks and disturbance-free motions,this paper handles the circular formation flight control problem with both directed network and spatiotemporal disturbance with the knowledge of its upper bound.Distinguishing from the design of a common Lyapunov fiunction for bidirectional cases,we separately design the control for the circular tracking subsystem and the formation keeping subsystem with the circular tracking error as input.Then the whole control system is regarded as a cascade connection of these two subsystems,which is proved to be stable by input-tostate stability(ISS)theory.For the purpose of encountering the external disturbance,the backstepping technology is introduced to design the control inputs of each UAV pointing to North and Down along the special sphere(say,the circular tracking control algorithm)with the help of the switching function.Meanwhile,the distributed linear consensus protocol integrated with anther switching anti-interference item is developed to construct the control input of each UAV pointing to east along the special sphere(say,the formation keeping control law)for formation keeping.The validity of the proposed control law is proved both in the rigorous theory and through numerical simulations.
基金financially supported by the National Natural Science Foundation of China(Nos.51804116,51772092,51972109)Hunan Provincial Natural Science Foundation of China(Nos.2018JJ3207,2017JJ2103,2019JJ40102,2019JJ50205,2018JJ2149)+1 种基金China Scholarship Councilthe Scientific Research Fund of Hunan Provincial Education Department,China(Nos.18B346,18A315,18B347,19A205)。
文摘Transition metal compound(TMC)/carbon hybrids,as prospering electrocatalyst,have attracted great attention in the field of oxygen reduction reaction(ORR).Their morphology,structure and composition often play a crucial role in determining the ORR performance.In this work,we for the first time report the successful fabrication of porous core-shell Fe_(1-x)S@N,S co-doped carbon(Fe_(1-x)S@NSC-t,t represents etching time)by a novel in-situ self-template induced strategy using Fe3O4 nanospheres and pyrrole as sacrificial self-template.The post-polymerization of pyrrole can be accomplished by the Fe^(3+)released through the etching of Fe_(3)O_(4) by HCl acid.Thus,the etching time has a significant effect on the morphology,structure,composition a nd ORR performance of Fe_(1-x)S@NSC-t.Based on the cha racterizations,we find Fe_(1-x)S@NSC-24 can realize effective and balanced combination of Fe_(1-x)S and NSC,possessing porous core-shell architecture,optimized structure defect,specific surface area and doped heteroatoms configurations(especially for pyridinic N,graphitic N and Fe-N structure).These features thus lead to outstanding catalytic activity and cycling stability towards ORR.Our work provides a good guidance on the design of TMC/carbon-based electrodes with unique stable morphology and optimized structure and composition.
文摘This article considers the problem of directing a family of fully actuated surface vessels to cooperatively follow a set of convex and closed orbits with a time-invariant reference orbital velocity and maintain attitude synchronization. A consensusbased adaptive control law under a bidirectional communication topology is proposed to estimate the reference orbital velocity so that the restriction that every vessel in the family must have access to the reference in the previous literature can be removed.The assumption of nonzero total linear speed of each vessel is removed by the use of potential function. Simulation results demonstrate the effectiveness of the proposed approach.
基金supported by the Air Force Office of Scientific Research(Grant No.9550-20-1-0279)with Program Manager Dr.Byung-Lip(Les)Lee and NSF CMMI,USA(Grant No.1930873).
基金supported by the National Natural Science Foundation of China(Grant Nos.52171207,52104301)the Scientifc Research Fund of Hunan Provincial Education Department,China(Grant Nos.21A0392 and 21B0406)+1 种基金the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ40162)the Guangxi Key Laboratory of Low Carbon Energy Material(2020GXKLLCEM03).
文摘ZnS is a promising material for lithium-ion battery anodes due to its abundant natural resources,simplicity of synthesis,and high theoretical lithium storage capacity.However,it needs to be optimized for its low conductivity and volume efect during the charge–discharge process.The traditional method of combining with carbonaceous materials is usually laborious,and the required sulfuration process may possibly result in the destruction of materials morphology.In this study,hybrid materials formed by the combination of ZnS nanocrystals and high porosity carbon fbers were synthesized by one-step electrospinning using zinc diethyldithiocarbamate and polyacrylonitrile as raw materials and poly(ethylene glycol)—block-poly(propylene glycol)—block-poly(ethylene glycol)as template.The method is simple and avoids the infuence of sulfuration process on the morphology of materials.The composite presents a specifc capacity of 592.2 mAh g^(−1) under a current density of 1 A g^(−1) after 1000 cycles.The porous structure signifcantly decreases the difusion mean-free path of Li+and inhibits the volume efect associated with the lithium storage process of ZnS.In addition,the 3D cross-linked carbon fbers improve the conductivity of materials.This study can serve as an inspiration for the development of other lithium storage composites.
基金supported by grants from the National Natural Science Foundation of China (31771188 and 31471027)the Science and Technology Commission of Shanghai Municipality, China (13DJ1400302)
文摘Neuropathic pain is a chronic debilitating symptom characterized by spontaneous pain and mechanical allodynia. It occurs in distinct forms, including brushevoked dynamic and filament-evoked punctate mechanical allodynia. Potassium channel 2.1(Kir2.1), which exhibits strong inward rectification, is and regulates the activity of lamina I projection neurons. However, the relationship between Kir2.1 channels and mechanical allodynia is still unclear. In this study, we first found that pretreatment with ML133, a selective Kir2.1 inhibitor, by intrathecal administration, preferentially inhibited dynamic, but not punctate, allodynia in mice with spared nerve injury(SNI).Intrathecal injection of low doses of strychnine, a glycine receptor inhibitor, selectively induced dynamic, but not punctate allodynia, not only in na¨?ve but also in ML133-pretreated mice. In contrast, bicuculline, a GABAAreceptor antagonist, induced only punctate, but not dynamic,allodynia. These results indicated the involvement of glycinergic transmission in the development of dynamic allodynia. We further found that SNI significantly suppressed the frequency, but not the amplitude, of the glycinergic spontaneous inhibitory postsynaptic currents(gly-sIPSCs) in neurons on the lamina II-III border of the spinal dorsal horn, and pretreatment with ML133 prevented the SNI-induced gly-sIPSC reduction. Furthermore, 5 days after SNI, ML133, either by intrathecal administration oracute bath perfusion, and strychnine sensitively reversed the SNI-induced dynamic, but not punctate, allodynia and the gly-sIPSC reduction in lamina IIi neurons, respectively.In conclusion, our results suggest that blockade of Kir2.1 channels in the spinal dorsal horn selectively inhibits dynamic, but not punctate, mechanical allodynia by enhancing glycinergic inhibitory transmission.
基金the National Natural Science Foundation of China(Nos.61973074 and 61973082)。
文摘This paper presents applications of the continuous feedback method to achieve path-following and a formation moving along the desired orbits within a finite time.It is assumed that the topology for the virtual leader and followers is directed.An additional condition of the so-called barrier function is designed to make all agents move within a limited area.A novel continuous finite-time path-following control law is first designed based on the barrier function and backstepping.Then a novel continuous finite-time formation algorithm is designed by regarding the path-following errors as disturbances.The settling-time properties of the resulting system are studied in detail and simulations are presented to validate the proposed strategies.
基金This work was supported by the National Key R&D Program of China(No.2021YFA1102600)the National Natural Science Foundation of China(No.82002315).
文摘Clinical therapeutics for the regeneration of osteochondral defects(OCD)in the early stages of osteoarthritis remain an enormous challenge in orthopaedics.For in-depth studies of tissue engineering and regenerative medicine in terms of OCD treatment,the utility of an optimal OCD animal model is crucial for assessing the effects of implanted biomaterials on the repair of damaged osteochondral tissues.Currently,the most frequently used in vivo animal models for OCD regeneration include mice,rats,rabbits,dogs,pigs,goats,sheep,horses and nonhuman primates.However,there is no single“gold standard”animal model to accurately recapitulate human disease in all aspects,thus understanding the benefits and limitations of each animal model is critical for selecting the most suitable one.In this review,we aim to elaborate the complex pathological changes in osteoarthritic joints and to summarise the advantages and limitations of OCD animal models utilised for biomaterial testing along with the methodology of outcome assessment.Furthermore,we review the surgical procedures of OCD creation in different species,and the novel biomaterials that promote OCD regeneration.Above all,it provides a significant reference for selection of an appropriate animal model for use in preclinical in vivo studies of biomaterial-assisted osteochondral regeneration in osteoarthritic joints.