Graphene oxide(GO)membranes have received considerable attention owing to their outstanding water-permeation properties;however,the effect of the membrane’s microstructures(such as the distribution of oxidized and pr...Graphene oxide(GO)membranes have received considerable attention owing to their outstanding water-permeation properties;however,the effect of the membrane’s microstructures(such as the distribution of oxidized and pristine regions)on the transport mechanism remains unclear.In this study,we performed molecular simulations to explore the permeation of a water-ethanol mixture using a new type of Janus GO membranes with different orientations of oxidized and pristine surfaces.The results indicate that the oxidized upper surface endows the GO membrane with considerable water-capture capability and the in-built oxidized interlayer promotes the effective vertical diffusion of water molecules.Consequently,using the optimized Janus GO membrane,infinite water selectivity and outstanding water flux(-40.9 kg·m^(-2) h^(-1))were achieved.This study contributes to explaining the role of oxidized regions in water permeation via GO membranes and suggests that Janus GO membranes could be used as potential candidates for water-ethanol separation.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.21922805,21776125).
文摘Graphene oxide(GO)membranes have received considerable attention owing to their outstanding water-permeation properties;however,the effect of the membrane’s microstructures(such as the distribution of oxidized and pristine regions)on the transport mechanism remains unclear.In this study,we performed molecular simulations to explore the permeation of a water-ethanol mixture using a new type of Janus GO membranes with different orientations of oxidized and pristine surfaces.The results indicate that the oxidized upper surface endows the GO membrane with considerable water-capture capability and the in-built oxidized interlayer promotes the effective vertical diffusion of water molecules.Consequently,using the optimized Janus GO membrane,infinite water selectivity and outstanding water flux(-40.9 kg·m^(-2) h^(-1))were achieved.This study contributes to explaining the role of oxidized regions in water permeation via GO membranes and suggests that Janus GO membranes could be used as potential candidates for water-ethanol separation.