In this study,ionosonde observations over Fuke(19.5°N,109.1°E),Wuhan(30.5°N,114.4°E),and Mohe(53.5°N,122.3°E)were analyzed to demonstrate the responses of the sporadic E()to the severe at...In this study,ionosonde observations over Fuke(19.5°N,109.1°E),Wuhan(30.5°N,114.4°E),and Mohe(53.5°N,122.3°E)were analyzed to demonstrate the responses of the sporadic E()to the severe atmospheric disturbances caused by the Tonga volcanic eruptions on January 15,2022.The most prominent signature was the disappearance of the layer after~10:00 UT over Wuhan and Fuke,which was attributed to the vertical drift caused by the eruptions.The occurred intermittently after 13:00 UT following the arrival of the tropospheric Lamb wave.To examine the causal mechanism for the intermittence,we also included data of horizontal winds in the mesosphere and lower thermosphere region recorded by the meteor radars at Wuhan and Mohe in this study.The wind disturbances with periods of~20 hours contributed to the formation of the layer in the nighttime on January 15.展开更多
China’s Mars exploration mission has stimulated tremendous interest in planetary science exploration recently.To propose potential scientific research projects,this study presents a concept simulation for the measure...China’s Mars exploration mission has stimulated tremendous interest in planetary science exploration recently.To propose potential scientific research projects,this study presents a concept simulation for the measurement of Martian atmospheric winds using the Doppler Michelson interferometry technique.The simulation is based on the satellite instrument initially designed for the Dynamic Atmosphere Mars Observer(DYNAMO)project to measure vertical profiles of winds from the 1.27μm airglow observations in the Martian atmosphere.A comprehensive DYNAMO measurement simulation forward model based on an orbit submodel,an atmospheric background field submodel,and an instrument submodel is developed using the Michelson equation.The simulated interferogram signal over the field of view(FOV)calculated by the forward model is associated with the filter transmittance function,column emission rate of airglow,wind velocity,temperature,and the Michelson phase.The agreement between the derived atmospheric signals from the simulated interferogram without altitude inversion and the input parameters used to initiate the forward model confirms the validity of the forward model.展开更多
基金the Funds of the National Natural Science Foundation of China(NSFC),grant numbers 42174211,42230207,and U2039205.
文摘In this study,ionosonde observations over Fuke(19.5°N,109.1°E),Wuhan(30.5°N,114.4°E),and Mohe(53.5°N,122.3°E)were analyzed to demonstrate the responses of the sporadic E()to the severe atmospheric disturbances caused by the Tonga volcanic eruptions on January 15,2022.The most prominent signature was the disappearance of the layer after~10:00 UT over Wuhan and Fuke,which was attributed to the vertical drift caused by the eruptions.The occurred intermittently after 13:00 UT following the arrival of the tropospheric Lamb wave.To examine the causal mechanism for the intermittence,we also included data of horizontal winds in the mesosphere and lower thermosphere region recorded by the meteor radars at Wuhan and Mohe in this study.The wind disturbances with periods of~20 hours contributed to the formation of the layer in the nighttime on January 15.
基金This work was supported by the Pre-Research Project on Civil Aerospace Technologies Funded by China’s National Space Administration(Grant No.D020105)the National Natural Science Foundation of China(Grant Nos.41904142,41774164,42030202,41822403,41774165,41774161)+1 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)Youth Innovation Promotion Association CAS.W.Ward acknowledges support from the Canadian Space Agency and the National Science and Engineering Council(NSERC)of Canada.
文摘China’s Mars exploration mission has stimulated tremendous interest in planetary science exploration recently.To propose potential scientific research projects,this study presents a concept simulation for the measurement of Martian atmospheric winds using the Doppler Michelson interferometry technique.The simulation is based on the satellite instrument initially designed for the Dynamic Atmosphere Mars Observer(DYNAMO)project to measure vertical profiles of winds from the 1.27μm airglow observations in the Martian atmosphere.A comprehensive DYNAMO measurement simulation forward model based on an orbit submodel,an atmospheric background field submodel,and an instrument submodel is developed using the Michelson equation.The simulated interferogram signal over the field of view(FOV)calculated by the forward model is associated with the filter transmittance function,column emission rate of airglow,wind velocity,temperature,and the Michelson phase.The agreement between the derived atmospheric signals from the simulated interferogram without altitude inversion and the input parameters used to initiate the forward model confirms the validity of the forward model.