BACKGROUND: Previous studies have demonstrated that intracellular Ca^2+ ([Ca^2+]) overload, excitotoxicity, free radical injury, and nitric oxide toxicity are involved in mechanisms of neuronal death in the ische...BACKGROUND: Previous studies have demonstrated that intracellular Ca^2+ ([Ca^2+]) overload, excitotoxicity, free radical injury, and nitric oxide toxicity are involved in mechanisms of neuronal death in the ischemic brain. OBJECTIVE: To investigate the influence of Panax quinquefo/ium saponins (PQS) on multiple factors-induced Ca^2+ overload in the rat pheochromocytoma (PC12) cell line. DESIGN, TIME AND SETTING: Intergroup comparison, in vitro study. The experiment was performed at the Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University between November 2007 and April 2008. MATERIALS- In vitro cultured PC12 cells in the logarithmic phase were assigned into blank control, model, and drug treatment groups (10 μmol/L nimodipine; 40 μg/L, 100 μg/L, and 250 μg/L PQS). Nimodipine was purchased from Jiangsu Yangtze River Pharmacy Group Co., China; PQS (purity 〉 95%, HLPC grade) was provided by School of Basic Medical Sciences, Jilin University. Caffeine, Na2S2O4, L-glutamic acid (Glu), Fura-2/AM, and calcium ionophore A23187 were purchased from Sigma, USA. METHODS: PC12 cells in the model and drug treatment groups were separately incubated in glucose-free Hank's buffered saline solution + Na2S2O4 (2 mmol/L) for 6 hours, Glu (200 μmot/L) plus A23187 (0.05 μmol/L) for 6 hours, KCI (50 mmol/L) for 1 hour, and caffeine (5 mmol/L) for 3 hours to establish models of intracellular Ca^2+ overload induced by oxygen and glucose deprivation, Glu, A23187, high K+, or caffeine. In addition, control cells were incubated in high-glucose DMEM culture medium. MAIN OUTCOME MEASURES: [Ca^2+]i changes in PC12 cells exposed to oxygen-glucose deprivation, Glu, A23187, high K^+, or caffeine were detected using spectrofluorometer. RESULTS: PQS blocked the [Ca^2+]i increase induced by oxygen-glucose deprivation, Glu, A23187, high K+, or caffeine. In particular, high-dose PQS was most effective (P 〈 0.01). PQS significantly inhibited Glu- or caffeine-induced [Ca^2+]i increases in the absence of extracellular Ca^2+, but nimodipine did not. CONCLUSION: PQS blocked intracellular Ca^2+ overload induced by oxygen-glucose deprivation, Glu, A23187, high K^+, or caffeine. This mechanism might be involved in the attenuation of neuronal apoptosis following ischemic brain injury.展开更多
Herein we establish formation ability descriptors of high-entropy rare-earth monosilicates(HEREMs)via the data-driven discovery based on the high-throughput solid-state reaction and machine learning(ML)methods.Specifi...Herein we establish formation ability descriptors of high-entropy rare-earth monosilicates(HEREMs)via the data-driven discovery based on the high-throughput solid-state reaction and machine learning(ML)methods.Specifically,adequate high-quality data are generated with 132 samples synthesized by the self-developed high-throughput solid-state reaction apparatuses,and 30 potential descriptors are considered in ML simultaneously.Two classifications are proposed to study the phase formation of HEREMs via the ML approach combined with the genetic algorithm:(Ⅰ)to distinguish pure HEREMs(X)from other phases and(Ⅱ)to categorize the detail phases of HEREMs(X2,X1,or X2+X1).Four formation ability descriptors(r_(Me),EF,d_(Eg),and d_(Z*))with a high validation accuracy(96.2%)are proposed as the optimal combination for Classification I,where a smaller r_(Me)is determined to have the most significant influence on the formation of HEREMs.For ClassificationⅡ,a 100%validation accuracy is achieved by using only two formation ability descriptors(rion and d_(Z*)),where the rion is analyzed to be the dominant feature and a lower rion is beneficial to the formation of X2-HEREMs.Based on our established formation ability descriptors,6,045 unreported multicomponent silicates are explored,and 3,478 new HEREMs with 2,700 X2-and 423 X1-HEREMs are predicted.展开更多
Understanding the initial oxidation mechanism is critical for studying the oxidation resistance of high-entropy diborides.However,related studies are scarce.Herein,the initial oxidation mechanism of(Zr_(0.25)Ti_(0.25)...Understanding the initial oxidation mechanism is critical for studying the oxidation resistance of high-entropy diborides.However,related studies are scarce.Herein,the initial oxidation mechanism of(Zr_(0.25)Ti_(0.25)Nb_(0.25)Ta_(0.25))B_(2)high-entropy diborides(HEB_(2)-1)is investigated by first-principles calculations at the atomic level.By employing the two-region model method,the most stable surface of HEB_(2)-1 is determined to be(1120)surface.The dissociative adsorption process of the oxygen molecule on the HEB_(2)-1-(1120)surface is predicted to proceed spontaneously,where OeO bond breaks and each oxygen atom is chemisorbed on the most preferable hollow site.The adsorption energy and the diffusion barrier of the oxygen atom on the(1120)surface of HEB_(2)-1 are in the vicinity of the average level of the cor-responding four individual diborides.In addition,ab initio molecular dynamics simulations indicate a high initial oxidation resistance of HEB_(2)-1 at 1000 K.Our results are beneficial to further designing the high-entropy diborides with excellent oxidation resistance.展开更多
Oxidation resistance is critical for high-entropy diborides(HEBs)to be used as thermal structural components under oxygen-containing high-temperature environments.Here,we successfully realize the exploitation of(Zr,Ta...Oxidation resistance is critical for high-entropy diborides(HEBs)to be used as thermal structural components under oxygen-containing high-temperature environments.Here,we successfully realize the exploitation of(Zr,Ta,Cr,W)B2 HEBs with superior oxidation resistance by comprehensively screening their compositions.To be specific,21 kinds of HEB-xTM(x=0–25 mol%,TM=Zr,Ta,Cr,and W)samples are fabricated via an ultrafast high-temperature sintering technique.The as-fabricated HEB-5Cr samples show the best oxidation resistance at 1673 K among all the samples.Subsquent oxidation investigations further confirm the as-fabricated HEB-5Cr samples possess superior oxidation resistance with the parabolic oxidation behavior across 1473–1773 K.Such superior oxidation resistance is believed to result from the multi-component synergistic effects.Particularly,the Ta^(5+)and W^(4+)cations with high ionic field strengths can promote the formation of 4B–O–4B linkages between[BO4]tetrahedrons by charge balance,which can stabilize the threedimensional skeletal structure of B_(2)O_(3)glass and consequently result in an improved viscosity of the B_(2)O_(3)glassy layer.In addition,the ZrO_(2)and Cr_(2)O_(3)with high melting points can dissolve into the B_(2)O_(3)glass to increase its glass transition temperature,leading to an enhanced viscosity of the B_(2)O_(3)glassy layer.展开更多
High-entropy nanomaterials have been arousing considerable interest in recent years due to their huge composition space,unique microstructure,and adjustable properties.Previous studies focused mainly on high-entropy n...High-entropy nanomaterials have been arousing considerable interest in recent years due to their huge composition space,unique microstructure,and adjustable properties.Previous studies focused mainly on high-entropy nanoparticles,while other high-entropy nanomaterials were rarely reported.Herein,we reported a new class of high-entropy nanomaterials,namely(Tao2Nbo2Ti.2Wo.2Moo2)B2 high-entropy diboride(HEB-1)nanoflowers,for the first time.Formation possibility of HEB-1 was first theoretically analyzed from two aspects of lattice size difference and chemical reaction thermodynamics.We then successfully synthesized HEB-1 nanoflowers by a facile molten salt synthesis method at 1423 K.The as-synthesized HEB-1 nanoflowers showed an interesting chrysanthemum-like morphology assembled from numerous well-aligned nanorods with diameters of 20--30 nm and lengths of 100-200 nm.Meanwhile,these nanorods possessed a single-crystalline hexagonal structure of metal diborides and highly compositional uniformity from nanoscale to microscale.In addition,the formation of the as-synthesized HEB-I nanoflowers could be well interpreted by a classical surface-contolled crystal growth theory.This work not only enriches the categories of high-entropy nanomaterials but also opens up a new research field on high-entropy diboride nanomaterials.展开更多
Ultrafine-grained(Sm_(0.2)Gd_(0.2)Dy_(0.2)Er_(0.2)Yb_(0.2))_(2)Zr_(2)O_(7)high-entropy zirconates with single fluorite structure have been fabricated by high-pressure sintering of the self-synthesized nanopowders for ...Ultrafine-grained(Sm_(0.2)Gd_(0.2)Dy_(0.2)Er_(0.2)Yb_(0.2))_(2)Zr_(2)O_(7)high-entropy zirconates with single fluorite structure have been fabricated by high-pressure sintering of the self-synthesized nanopowders for the first time.The as-sintered samples exhibit a good microstructure with a grain size of 220 nm and a relative density of 96.8%,which yield excellent comprehensive mechanical properties with a high Vickers hardness of 12.5 GPa and a high fracture toughness of 3.4 MPa·m1/2.In addition,the as-sintered samples possess a good thermostability with the grain growth rate of 30 nm/h,and a low thermal conductivity of 1.57 W·m^(-1)·℃^(-1)at room temperature.The superior mechanical and thermal properties are primarily attributed to the“high-entropy”and grain-refinement effects and good interface bonding.展开更多
High-entropy ceramics(HECs) are gaining significant interest due to their huge composition space, unique microstructure, and adjustable properties. Previously reported studies focus mainly on HECs with the multi-catio...High-entropy ceramics(HECs) are gaining significant interest due to their huge composition space, unique microstructure, and adjustable properties. Previously reported studies focus mainly on HECs with the multi-cationic structure, while HECs with more than one anion are rarely studied. Herein we reported a new class of HECs, namely highentropy alumino-silicides(Mo0.25Nb0.25Ta0.25V0.25)(Al0.5Si0.5)2(HEAS-1) with multi-cationic and-anionic structure. The formation possibility of HEAS-1 was first theoretically analyzed from the aspects of thermodynamics and lattice size difference based on the first-principles calculations and then the HEAS-1 were successfully synthesized by the solid-state reaction at 1573K. The as-synthesized HEAS-1 exhibited good single-crystal hexagonal structure of metal alumino-silicides and simultaneously possessed high compositional uniformity.This study not only enriches the categories of HECs but also will open up a new research field on HECs with multi-cationic and-anionic structure.展开更多
Monkeypox (mpox) is a zoonotic disease caused by the mpox virus (MPXV) that has been primarily limited to Central and West African nations since its discovery. The recent spread of the West African lineage of MPXV in ...Monkeypox (mpox) is a zoonotic disease caused by the mpox virus (MPXV) that has been primarily limited to Central and West African nations since its discovery. The recent spread of the West African lineage of MPXV in historically unaffected countries has raised concerns for global public health. Despite a significant decrease in global mpox cases, there is still a risk of a global resurgence. This study reports the first local case of mpox caused by an imported case in the Chinese mainland. Polymerase chain reaction (PCR) diagnosed the two cases, and the viral genomes were obtained by next-generation sequencing. Genomic analysis revealed that the two strains shared an identical genome sequence and belonged to the B.1.3 branch of the West African lineage, which is the first local case of mpox caused by an imported case in the Chinese mainland, highlighting the potential threat of mpox in China and the immediate need for adequate surveillance measures.展开更多
In order to improve ablation resistance of carbon/carbon(C/C) composites,SiC nanowires were prepared on C/C composites surface in prior through chemical vapor reaction before HfC coating.SiC nanowires grew randomly an...In order to improve ablation resistance of carbon/carbon(C/C) composites,SiC nanowires were prepared on C/C composites surface in prior through chemical vapor reaction before HfC coating.SiC nanowires grew randomly and had good combination with HfC coating.SiC nanowires toughed HfC coating had lower linear and mass ablation rates than original HfC coating.The surface was much flatter and exhibited smaller cracks in center region.The ablation mechanism of HfC coating has been changed by SiC nanowires.Thicker HfO2 fused layer was formed on the surface of the toughed HfC coating,which could provide efficient protection for C/C composites.Therefore,SiC nanowires toughed HfC coating behaved in better ablation resistance.展开更多
Nanocrystalline Hf B2 powders were successfully synthesized by molten salt synthesis technique at 1373 K using B and Hf O2 as precursors within KCl/Na Cl molten salts.The results showed that the as-synthesized powders...Nanocrystalline Hf B2 powders were successfully synthesized by molten salt synthesis technique at 1373 K using B and Hf O2 as precursors within KCl/Na Cl molten salts.The results showed that the as-synthesized powders exhibited an irregular polyhedral morphology with the average particle size of 155 nm and possessed a single-crystalline structure.From a fundamental aspect,we demonstrated the molten-salt assisted formation mechanism that the molten salts could accelerate the diffusion rate of the reactants and improve the chemical reaction rate of the reactants in the system to induce the synthesis of the high-purity nanocrystalline powders.Thermogravimetric analysis showed that the oxidation of the as-synthesized Hf B2 powders at 773–1073 K in air was the weight gain process and the corresponding oxidation behavior followed parabolic kinetics governed by the diffusion of oxygen in the oxide layer.展开更多
The high-purity and superfine high-entropy zirconate nanopowders,namely(Y_(0.25)La_(0.25)Sm_(0.25)Eu_(0.25))_(2)Zr_(2)O_(7)nanopowders,without agglomeration,were successfully synthesized via polymerized complex method...The high-purity and superfine high-entropy zirconate nanopowders,namely(Y_(0.25)La_(0.25)Sm_(0.25)Eu_(0.25))_(2)Zr_(2)O_(7)nanopowders,without agglomeration,were successfully synthesized via polymerized complex method at low temperatures for the first time.The results showed that the crystallinity degree,lattice strain,and particle size of the as-synthesized powders were gradually enhanced with the increase of the synthesis temperature from 800 to 1300℃.The as-synthesized powders involved fluorite phase in the range of 800-1200℃while they underwent the phase evolution from fluorite to pyrochlore at 1300℃.It is worth mentioning that the as-synthesized powders at 900℃are of the highest quality among all the as-synthesized powders,which is due to the fact that they not only possess the particle size of 11 nm without agglomeration,but also show high purity and good compositional uniformity.展开更多
The development of high-entropy carbide nanoparticles merits untold scientific and technological potential,yet their synthesis remains a challenge using conventional synthetic techniques.Herein we present a facile,rap...The development of high-entropy carbide nanoparticles merits untold scientific and technological potential,yet their synthesis remains a challenge using conventional synthetic techniques.Herein we present a facile,rapid and low-cost route for the combustion synthesis of(Ta_(0.25)Nb_(0.25)-Zr_(0.25)Ti_(0.25))C high-entropy carbide(HEC-1)nanoparticles by self-propagating reaction of metal oxides,carbon and Mg mixture precursors in NaF salt media for the first time.The combustion synthesis possibility of HEC-1 is first analyzed theoretically from thermodynamic aspects,and then the ultrafine HEC-1 nanoparticles(average particle size:~19 nm)are synthesized successfully by the combustion synthesis technique at combustion temperature of~1487 K,duration of 63 s,and heating rate of~68 K s^(-1).The as-synthesized HEC-1 nanoparticles possess high compositional uniformity and low oxygen impurity content of 2.98 wt%.To prove their utility,the as-synthesized HEC-1 nanoparticles are utilized as an effective persulfate activation catalyst for the degradation of tetracycline pollutant in groundwater or wastewater and a removal efficiency of~65.5%for tetracycline is obtained after10 h.展开更多
The development of high-entropy borides with combined structural and functional performance holds untold scientific and technological potential,yet relevant studies have been rarely reported.In this work,we report nan...The development of high-entropy borides with combined structural and functional performance holds untold scientific and technological potential,yet relevant studies have been rarely reported.In this work,we report nanocrystalline(La_(0.25)Ce_(0.25)Nd_(0.25)Eu_(0.25))B6 high-entropy rare-earth hexaboride(HEReB6-1)ceramics fabricated through the high-pressure sintering of self-synthesized nanopowders for the first time.The as-fabricated samples exhibited a highly dense(96.3%)nanocrystalline(94 nm)microstructure with major(001)fiber textures and good grain boundaries without any impurities,resulting in a remarkable mechanical,electrical,and thermionic emission performance.The results showed that the samples possessed outstanding comprehensive mechanical properties and a high electrical resistivity from room temperature to high temperatures;these were greater than the average values of corresponding binary rare-earth hexaborides,such as a Vickers hardness of 23.4±0.6 GPa and a fracture toughness of 3.0±0.4 MPa•m^(1/2)at room temperature.More importantly,they showed high emission current densities at elevated temperatures,which were higher than the average values of the corresponding binary rare-earth hexaborides.For instance,the maximum emission current density reached 48.3 A•cm^(−2)at 1873 K.Such superior performance makes the nanocrystalline HEReB6-1 ceramics highly suitable for potential applications in thermionic emission cathodes.展开更多
There are several limitations to the application of nanoparticles in the treatment of cancer,including their low drug loading,poor colloidal stability,insufficient tumor penetration,and uncontrolled release of the dru...There are several limitations to the application of nanoparticles in the treatment of cancer,including their low drug loading,poor colloidal stability,insufficient tumor penetration,and uncontrolled release of the drug.Herein,gelatin/laponite(LP)/doxorubicin(GLD)nanoparticles are developed by crosslinking LP with gelatin for doxorubicin delivery.GLD shows high doxorubicin encapsulation efficacy(99%)and strong colloidal stability,as seen from the unchanged size over the past 21 days and reduced protein absorption by 48-fold compared with unmodified laponite/doxorubicin nanoparticles.When gelatin from 115 nm GLD reaches the tumor site,matrix metallopeptidase-2(MMP-2)from the tumor environment breaks it down to release smaller 40 nm LP nanoparticles for effective tumor cell endocytosis.As demonstrated by superior penetration in both in vitro three-dimensional(3D)tumor spheroids(138-fold increase compared to the free drug)and in vivo tumor models.The intracellular low pH and MMP-2 further cause doxorubicin release after endocytosis by tumor cells,leading to a higher inhibitory potential against cancer cells.The improved anticancer effectiveness and strong in vivo biocompatibility of GLD have been confirmed using a mouse tumor-bearing model.MMP-2/pH sequentially triggered anticancer drug delivery is made possible by the logical design of tumor-penetrating GLD,offering a useful method for anticancer therapy.展开更多
基金Supported by:the Natural Science Foundation of Heilongjiang Province,No ZA2006-07
文摘BACKGROUND: Previous studies have demonstrated that intracellular Ca^2+ ([Ca^2+]) overload, excitotoxicity, free radical injury, and nitric oxide toxicity are involved in mechanisms of neuronal death in the ischemic brain. OBJECTIVE: To investigate the influence of Panax quinquefo/ium saponins (PQS) on multiple factors-induced Ca^2+ overload in the rat pheochromocytoma (PC12) cell line. DESIGN, TIME AND SETTING: Intergroup comparison, in vitro study. The experiment was performed at the Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University between November 2007 and April 2008. MATERIALS- In vitro cultured PC12 cells in the logarithmic phase were assigned into blank control, model, and drug treatment groups (10 μmol/L nimodipine; 40 μg/L, 100 μg/L, and 250 μg/L PQS). Nimodipine was purchased from Jiangsu Yangtze River Pharmacy Group Co., China; PQS (purity 〉 95%, HLPC grade) was provided by School of Basic Medical Sciences, Jilin University. Caffeine, Na2S2O4, L-glutamic acid (Glu), Fura-2/AM, and calcium ionophore A23187 were purchased from Sigma, USA. METHODS: PC12 cells in the model and drug treatment groups were separately incubated in glucose-free Hank's buffered saline solution + Na2S2O4 (2 mmol/L) for 6 hours, Glu (200 μmot/L) plus A23187 (0.05 μmol/L) for 6 hours, KCI (50 mmol/L) for 1 hour, and caffeine (5 mmol/L) for 3 hours to establish models of intracellular Ca^2+ overload induced by oxygen and glucose deprivation, Glu, A23187, high K+, or caffeine. In addition, control cells were incubated in high-glucose DMEM culture medium. MAIN OUTCOME MEASURES: [Ca^2+]i changes in PC12 cells exposed to oxygen-glucose deprivation, Glu, A23187, high K^+, or caffeine were detected using spectrofluorometer. RESULTS: PQS blocked the [Ca^2+]i increase induced by oxygen-glucose deprivation, Glu, A23187, high K+, or caffeine. In particular, high-dose PQS was most effective (P 〈 0.01). PQS significantly inhibited Glu- or caffeine-induced [Ca^2+]i increases in the absence of extracellular Ca^2+, but nimodipine did not. CONCLUSION: PQS blocked intracellular Ca^2+ overload induced by oxygen-glucose deprivation, Glu, A23187, high K^+, or caffeine. This mechanism might be involved in the attenuation of neuronal apoptosis following ischemic brain injury.
基金support from the National Key Research and Development Program of China(No.2022YFB3708600)the National Natural Science Foundation of China(No.52122204 and 51972116)Guangzhou Basic and Applied Basic Research Foundation(No.202201010632).
文摘Herein we establish formation ability descriptors of high-entropy rare-earth monosilicates(HEREMs)via the data-driven discovery based on the high-throughput solid-state reaction and machine learning(ML)methods.Specifically,adequate high-quality data are generated with 132 samples synthesized by the self-developed high-throughput solid-state reaction apparatuses,and 30 potential descriptors are considered in ML simultaneously.Two classifications are proposed to study the phase formation of HEREMs via the ML approach combined with the genetic algorithm:(Ⅰ)to distinguish pure HEREMs(X)from other phases and(Ⅱ)to categorize the detail phases of HEREMs(X2,X1,or X2+X1).Four formation ability descriptors(r_(Me),EF,d_(Eg),and d_(Z*))with a high validation accuracy(96.2%)are proposed as the optimal combination for Classification I,where a smaller r_(Me)is determined to have the most significant influence on the formation of HEREMs.For ClassificationⅡ,a 100%validation accuracy is achieved by using only two formation ability descriptors(rion and d_(Z*)),where the rion is analyzed to be the dominant feature and a lower rion is beneficial to the formation of X2-HEREMs.Based on our established formation ability descriptors,6,045 unreported multicomponent silicates are explored,and 3,478 new HEREMs with 2,700 X2-and 423 X1-HEREMs are predicted.
基金support from the National Key Research and Development Program of China(No.2021YFA0715801)the National Natural Science Foundation of China(Nos.52122204 and 51972116)Guangzhou Basic and Applied Basic Research Foundation(No.202201010632).
文摘Understanding the initial oxidation mechanism is critical for studying the oxidation resistance of high-entropy diborides.However,related studies are scarce.Herein,the initial oxidation mechanism of(Zr_(0.25)Ti_(0.25)Nb_(0.25)Ta_(0.25))B_(2)high-entropy diborides(HEB_(2)-1)is investigated by first-principles calculations at the atomic level.By employing the two-region model method,the most stable surface of HEB_(2)-1 is determined to be(1120)surface.The dissociative adsorption process of the oxygen molecule on the HEB_(2)-1-(1120)surface is predicted to proceed spontaneously,where OeO bond breaks and each oxygen atom is chemisorbed on the most preferable hollow site.The adsorption energy and the diffusion barrier of the oxygen atom on the(1120)surface of HEB_(2)-1 are in the vicinity of the average level of the cor-responding four individual diborides.In addition,ab initio molecular dynamics simulations indicate a high initial oxidation resistance of HEB_(2)-1 at 1000 K.Our results are beneficial to further designing the high-entropy diborides with excellent oxidation resistance.
基金the financial support from the National Key Research and Development Program of China(2021YFA0715801)the National Natural Science Foundation of China(52122204)。
文摘Oxidation resistance is critical for high-entropy diborides(HEBs)to be used as thermal structural components under oxygen-containing high-temperature environments.Here,we successfully realize the exploitation of(Zr,Ta,Cr,W)B2 HEBs with superior oxidation resistance by comprehensively screening their compositions.To be specific,21 kinds of HEB-xTM(x=0–25 mol%,TM=Zr,Ta,Cr,and W)samples are fabricated via an ultrafast high-temperature sintering technique.The as-fabricated HEB-5Cr samples show the best oxidation resistance at 1673 K among all the samples.Subsquent oxidation investigations further confirm the as-fabricated HEB-5Cr samples possess superior oxidation resistance with the parabolic oxidation behavior across 1473–1773 K.Such superior oxidation resistance is believed to result from the multi-component synergistic effects.Particularly,the Ta^(5+)and W^(4+)cations with high ionic field strengths can promote the formation of 4B–O–4B linkages between[BO4]tetrahedrons by charge balance,which can stabilize the threedimensional skeletal structure of B_(2)O_(3)glass and consequently result in an improved viscosity of the B_(2)O_(3)glassy layer.In addition,the ZrO_(2)and Cr_(2)O_(3)with high melting points can dissolve into the B_(2)O_(3)glass to increase its glass transition temperature,leading to an enhanced viscosity of the B_(2)O_(3)glassy layer.
基金We acknowledge financial support from the National Key R&D Program of China(No.2017YFB0703200)National Natural Science Foundation of China(Nos.51802100 and 51972116)+1 种基金Young Elite Scientists Sponsorship Program by CAST(No.2017QNRC001)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515012145).
文摘High-entropy nanomaterials have been arousing considerable interest in recent years due to their huge composition space,unique microstructure,and adjustable properties.Previous studies focused mainly on high-entropy nanoparticles,while other high-entropy nanomaterials were rarely reported.Herein,we reported a new class of high-entropy nanomaterials,namely(Tao2Nbo2Ti.2Wo.2Moo2)B2 high-entropy diboride(HEB-1)nanoflowers,for the first time.Formation possibility of HEB-1 was first theoretically analyzed from two aspects of lattice size difference and chemical reaction thermodynamics.We then successfully synthesized HEB-1 nanoflowers by a facile molten salt synthesis method at 1423 K.The as-synthesized HEB-1 nanoflowers showed an interesting chrysanthemum-like morphology assembled from numerous well-aligned nanorods with diameters of 20--30 nm and lengths of 100-200 nm.Meanwhile,these nanorods possessed a single-crystalline hexagonal structure of metal diborides and highly compositional uniformity from nanoscale to microscale.In addition,the formation of the as-synthesized HEB-I nanoflowers could be well interpreted by a classical surface-contolled crystal growth theory.This work not only enriches the categories of high-entropy nanomaterials but also opens up a new research field on high-entropy diboride nanomaterials.
基金support from the National Key Research and Development Program of China(No.2021YFA0715801)the National Natural Science Foundation of China(No.51972116 and 52122204)+1 种基金the,Guangzhou Basic and Applied Basic Research Foundation(No.202201010632)the China Postdoctoral Science Foundation(2021M691051).
文摘Ultrafine-grained(Sm_(0.2)Gd_(0.2)Dy_(0.2)Er_(0.2)Yb_(0.2))_(2)Zr_(2)O_(7)high-entropy zirconates with single fluorite structure have been fabricated by high-pressure sintering of the self-synthesized nanopowders for the first time.The as-sintered samples exhibit a good microstructure with a grain size of 220 nm and a relative density of 96.8%,which yield excellent comprehensive mechanical properties with a high Vickers hardness of 12.5 GPa and a high fracture toughness of 3.4 MPa·m1/2.In addition,the as-sintered samples possess a good thermostability with the grain growth rate of 30 nm/h,and a low thermal conductivity of 1.57 W·m^(-1)·℃^(-1)at room temperature.The superior mechanical and thermal properties are primarily attributed to the“high-entropy”and grain-refinement effects and good interface bonding.
基金supported by the National Key Research and Development Program of China (2017YFB0703200)Young Elite Scientists Sponsorship Program by China Association for Science and Technology (2017QNRC001)the National Natural Science Foundation of China (51802100 and 51972116)
文摘High-entropy ceramics(HECs) are gaining significant interest due to their huge composition space, unique microstructure, and adjustable properties. Previously reported studies focus mainly on HECs with the multi-cationic structure, while HECs with more than one anion are rarely studied. Herein we reported a new class of HECs, namely highentropy alumino-silicides(Mo0.25Nb0.25Ta0.25V0.25)(Al0.5Si0.5)2(HEAS-1) with multi-cationic and-anionic structure. The formation possibility of HEAS-1 was first theoretically analyzed from the aspects of thermodynamics and lattice size difference based on the first-principles calculations and then the HEAS-1 were successfully synthesized by the solid-state reaction at 1573K. The as-synthesized HEAS-1 exhibited good single-crystal hexagonal structure of metal alumino-silicides and simultaneously possessed high compositional uniformity.This study not only enriches the categories of HECs but also will open up a new research field on HECs with multi-cationic and-anionic structure.
基金supported by the National Key Research and Development Program of China(2021ZD0114103)the Capital's Funds for Health Improvement and Research(2022-2G-30115).
文摘Monkeypox (mpox) is a zoonotic disease caused by the mpox virus (MPXV) that has been primarily limited to Central and West African nations since its discovery. The recent spread of the West African lineage of MPXV in historically unaffected countries has raised concerns for global public health. Despite a significant decrease in global mpox cases, there is still a risk of a global resurgence. This study reports the first local case of mpox caused by an imported case in the Chinese mainland. Polymerase chain reaction (PCR) diagnosed the two cases, and the viral genomes were obtained by next-generation sequencing. Genomic analysis revealed that the two strains shared an identical genome sequence and belonged to the B.1.3 branch of the West African lineage, which is the first local case of mpox caused by an imported case in the Chinese mainland, highlighting the potential threat of mpox in China and the immediate need for adequate surveillance measures.
基金supported by National Natural Science Foundation of China (No. 51072166)National Science Foundation of China, (No. 51221001)+1 种基金Program for New Century Excellent Talents in Universitythe "111 Project" (No. B08040)
文摘In order to improve ablation resistance of carbon/carbon(C/C) composites,SiC nanowires were prepared on C/C composites surface in prior through chemical vapor reaction before HfC coating.SiC nanowires grew randomly and had good combination with HfC coating.SiC nanowires toughed HfC coating had lower linear and mass ablation rates than original HfC coating.The surface was much flatter and exhibited smaller cracks in center region.The ablation mechanism of HfC coating has been changed by SiC nanowires.Thicker HfO2 fused layer was formed on the surface of the toughed HfC coating,which could provide efficient protection for C/C composites.Therefore,SiC nanowires toughed HfC coating behaved in better ablation resistance.
基金financial support from the National Key R&D Program of China (No. 2017YFB0703200)National Natural Science Foundation of China (Nos. 51802100 and 51972116)+1 种基金Young Elite Scientists Sponsorship Program by CAST (No. 2017QNRC001)the fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201820)
文摘Nanocrystalline Hf B2 powders were successfully synthesized by molten salt synthesis technique at 1373 K using B and Hf O2 as precursors within KCl/Na Cl molten salts.The results showed that the as-synthesized powders exhibited an irregular polyhedral morphology with the average particle size of 155 nm and possessed a single-crystalline structure.From a fundamental aspect,we demonstrated the molten-salt assisted formation mechanism that the molten salts could accelerate the diffusion rate of the reactants and improve the chemical reaction rate of the reactants in the system to induce the synthesis of the high-purity nanocrystalline powders.Thermogravimetric analysis showed that the oxidation of the as-synthesized Hf B2 powders at 773–1073 K in air was the weight gain process and the corresponding oxidation behavior followed parabolic kinetics governed by the diffusion of oxygen in the oxide layer.
基金support from the National Natural Science Foundation of China(Nos.52122204 and 51972116)the Guangdong Basic and Applied Basic Research Foundation(Nos.2019A1515012145 and 2021A1515010603)+1 种基金the Fundamental Research Foundation for the Central Universities(No.2020ZYGXZR080)the Creative Research Foundation of the Science and Technology on Thermostructural Composite Materials Laboratory(No.JCKYS2020607003).
文摘The high-purity and superfine high-entropy zirconate nanopowders,namely(Y_(0.25)La_(0.25)Sm_(0.25)Eu_(0.25))_(2)Zr_(2)O_(7)nanopowders,without agglomeration,were successfully synthesized via polymerized complex method at low temperatures for the first time.The results showed that the crystallinity degree,lattice strain,and particle size of the as-synthesized powders were gradually enhanced with the increase of the synthesis temperature from 800 to 1300℃.The as-synthesized powders involved fluorite phase in the range of 800-1200℃while they underwent the phase evolution from fluorite to pyrochlore at 1300℃.It is worth mentioning that the as-synthesized powders at 900℃are of the highest quality among all the as-synthesized powders,which is due to the fact that they not only possess the particle size of 11 nm without agglomeration,but also show high purity and good compositional uniformity.
基金supported by the National Key Research and Development Program of China(2021YFA0715801)the National Natural Science Foundation of China(51972116,52072381 and 52122204)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2019A1515012145 and 2021A1515010603)the Creative Research Foundation of the Science Technology on Thermostructural Composite Materials Laboratory(JCKYS2020607003)。
文摘The development of high-entropy carbide nanoparticles merits untold scientific and technological potential,yet their synthesis remains a challenge using conventional synthetic techniques.Herein we present a facile,rapid and low-cost route for the combustion synthesis of(Ta_(0.25)Nb_(0.25)-Zr_(0.25)Ti_(0.25))C high-entropy carbide(HEC-1)nanoparticles by self-propagating reaction of metal oxides,carbon and Mg mixture precursors in NaF salt media for the first time.The combustion synthesis possibility of HEC-1 is first analyzed theoretically from thermodynamic aspects,and then the ultrafine HEC-1 nanoparticles(average particle size:~19 nm)are synthesized successfully by the combustion synthesis technique at combustion temperature of~1487 K,duration of 63 s,and heating rate of~68 K s^(-1).The as-synthesized HEC-1 nanoparticles possess high compositional uniformity and low oxygen impurity content of 2.98 wt%.To prove their utility,the as-synthesized HEC-1 nanoparticles are utilized as an effective persulfate activation catalyst for the degradation of tetracycline pollutant in groundwater or wastewater and a removal efficiency of~65.5%for tetracycline is obtained after10 h.
基金the National Key Research and Development Program of China(2021YFA0715801)the National Natural Science Foundation of China(51972116 and 52122204)the China Postdoctoral Science Foundation(2021M691051).
文摘The development of high-entropy borides with combined structural and functional performance holds untold scientific and technological potential,yet relevant studies have been rarely reported.In this work,we report nanocrystalline(La_(0.25)Ce_(0.25)Nd_(0.25)Eu_(0.25))B6 high-entropy rare-earth hexaboride(HEReB6-1)ceramics fabricated through the high-pressure sintering of self-synthesized nanopowders for the first time.The as-fabricated samples exhibited a highly dense(96.3%)nanocrystalline(94 nm)microstructure with major(001)fiber textures and good grain boundaries without any impurities,resulting in a remarkable mechanical,electrical,and thermionic emission performance.The results showed that the samples possessed outstanding comprehensive mechanical properties and a high electrical resistivity from room temperature to high temperatures;these were greater than the average values of corresponding binary rare-earth hexaborides,such as a Vickers hardness of 23.4±0.6 GPa and a fracture toughness of 3.0±0.4 MPa•m^(1/2)at room temperature.More importantly,they showed high emission current densities at elevated temperatures,which were higher than the average values of the corresponding binary rare-earth hexaborides.For instance,the maximum emission current density reached 48.3 A•cm^(−2)at 1873 K.Such superior performance makes the nanocrystalline HEReB6-1 ceramics highly suitable for potential applications in thermionic emission cathodes.
基金supported by the National Basic Research Program of China(973 Program,No.2012CB933600)the National Natural Science Foundation of China(Nos.81771964 and 82072051)+4 种基金the Shanghai Municipal Natural Science Foundation(No.15ZR1408500)funded by the Special Project of Clinical Research of Health Industry of Shanghai Municipal Health Commission(No.201940178)the Scientific Research Project of Hongkou District Health Committee of Shanghai(No.2002-17)the Clinical Research Project of Wu Jieping Medical Foundation(No.320.6750.2020-18-2)the Research Project of Shanghai Fourth People’s Hospital(No.sykyqd 00701&00702).
文摘There are several limitations to the application of nanoparticles in the treatment of cancer,including their low drug loading,poor colloidal stability,insufficient tumor penetration,and uncontrolled release of the drug.Herein,gelatin/laponite(LP)/doxorubicin(GLD)nanoparticles are developed by crosslinking LP with gelatin for doxorubicin delivery.GLD shows high doxorubicin encapsulation efficacy(99%)and strong colloidal stability,as seen from the unchanged size over the past 21 days and reduced protein absorption by 48-fold compared with unmodified laponite/doxorubicin nanoparticles.When gelatin from 115 nm GLD reaches the tumor site,matrix metallopeptidase-2(MMP-2)from the tumor environment breaks it down to release smaller 40 nm LP nanoparticles for effective tumor cell endocytosis.As demonstrated by superior penetration in both in vitro three-dimensional(3D)tumor spheroids(138-fold increase compared to the free drug)and in vivo tumor models.The intracellular low pH and MMP-2 further cause doxorubicin release after endocytosis by tumor cells,leading to a higher inhibitory potential against cancer cells.The improved anticancer effectiveness and strong in vivo biocompatibility of GLD have been confirmed using a mouse tumor-bearing model.MMP-2/pH sequentially triggered anticancer drug delivery is made possible by the logical design of tumor-penetrating GLD,offering a useful method for anticancer therapy.