The core-shell Li4Ti5O(12) @ polyaniline composites(LP) have been synthesized via an in situ synthesis with different mole ratios(25:1, 50:1 and 100:1, aniline:LTO). As an anode material of lithium-ion batte...The core-shell Li4Ti5O(12) @ polyaniline composites(LP) have been synthesized via an in situ synthesis with different mole ratios(25:1, 50:1 and 100:1, aniline:LTO). As an anode material of lithium-ion batteries,the LP-2 electrodes(50:1) exhibit a high initial reversible capacity of 205 mAh g^(-1)with an initial coulombic efficiency of 97.6% at 0.1 C. Even at a high current density of 10 C, the reversible capacity of the LP-2 electrodes still remains at 102 mAh g^(-1). Moreover, the LP-2 electrodes retain an impressive high capacity of 161 mAh g^(-1)after 100 cycles at 1 C, with 0.11% capacity fading per cycle. The promising electrochemical performance may be attributed to the significantly decreasing charge-transfer impedance of the LP composite and reductive polarity difference between the cathode and the electrolyte.展开更多
基金supported by the “973” Special Preliminary Study Plan (No. 2014CB260411)the National Key Technology R&D Program (No. 2013BAF09B02)+2 种基金the National Natural Science Foundation of China (No. 51472152)the Innovation Team Assistance Foundation of Shaanxi Province (No. 2013KCT-06)the Graduate Innovation Fund of Shaanxi University of Science and Technology
文摘The core-shell Li4Ti5O(12) @ polyaniline composites(LP) have been synthesized via an in situ synthesis with different mole ratios(25:1, 50:1 and 100:1, aniline:LTO). As an anode material of lithium-ion batteries,the LP-2 electrodes(50:1) exhibit a high initial reversible capacity of 205 mAh g^(-1)with an initial coulombic efficiency of 97.6% at 0.1 C. Even at a high current density of 10 C, the reversible capacity of the LP-2 electrodes still remains at 102 mAh g^(-1). Moreover, the LP-2 electrodes retain an impressive high capacity of 161 mAh g^(-1)after 100 cycles at 1 C, with 0.11% capacity fading per cycle. The promising electrochemical performance may be attributed to the significantly decreasing charge-transfer impedance of the LP composite and reductive polarity difference between the cathode and the electrolyte.