Specific regulation of the senescence-associated secretory phenotype(SASP)is vital to block senescence-induced detrimental cellular plasticity.Recently,some chemical compounds called senomorphics have demonstrated suc...Specific regulation of the senescence-associated secretory phenotype(SASP)is vital to block senescence-induced detrimental cellular plasticity.Recently,some chemical compounds called senomorphics have demonstrated such potential,but it remains challenging to achieve site-specific activation and real-time monitoring of the action of senomorphics,posing great obstacles for transformable applications.Here,we report a tailor-made hydrogen sulfide(H_(2)S)donor(Lyso-FH_(2)S-Gal)as a new class of molecule senomorphics for spatially controlled delivery of H_(2)S for visualization of regulation of cellular senescence.It comprises four functional moieties in a single molecular structure,including a lysosome-targeting group for cell recognition,a lysosomal enzyme-cleaved scaffold for site-specific activation,thiocarbamate as the H_(2)S precursor,and a switchable fluorophore for concurrent selfreporting of H_(2)S release and senescence imaging.Lyso-FH_(2)S-Gal exhibited remarkable response selectivity,sustained H_(2)S release,and 141-fold fluorescence enhancement.In cellular models,Lyso-FH_(2) S-Gal preferentially enriched in senescent cells over nonsenescent cells,and alleviated the levels of SASP and reactive oxygen species(ROS)in senescent cells,while remaining inert in nonsenescent cells.More impressively,it efficiently inhibited the SASPmediated crosstalk between senescent cells and surrounding nonsenescent cells,thereby preventing senescence propagation.This work offers a useful molecular tool with the hope for controlled intervention of senescence-related important biological processes.展开更多
In vivo fluorescence imaging in the second near-infrared (NIR-II)window (1000-1700 nm)has been emerging as a new powerful imaging technique and demonstrated tre- mendous potential in life sciences and biomedical appli...In vivo fluorescence imaging in the second near-infrared (NIR-II)window (1000-1700 nm)has been emerging as a new powerful imaging technique and demonstrated tre- mendous potential in life sciences and biomedical applications,given its advances in reducing photon scattering,light absorption,and autofluorescence [1,2].In particular,extensive efforts have been made to produce various NIR-II probes with different emission wavelengths for multiplexing purposes,as practical applications typically require concurrent detection of multiple analytes.展开更多
基金supported by the National Natural Science Foundation of China(grant nos.NSFC22274044 and 21877031)the National Key Research and Development Program of China(grant no.2020YFA0210802)the Science and Technology Innovation Program of Hunan Province(grant no.2018RS3043).
文摘Specific regulation of the senescence-associated secretory phenotype(SASP)is vital to block senescence-induced detrimental cellular plasticity.Recently,some chemical compounds called senomorphics have demonstrated such potential,but it remains challenging to achieve site-specific activation and real-time monitoring of the action of senomorphics,posing great obstacles for transformable applications.Here,we report a tailor-made hydrogen sulfide(H_(2)S)donor(Lyso-FH_(2)S-Gal)as a new class of molecule senomorphics for spatially controlled delivery of H_(2)S for visualization of regulation of cellular senescence.It comprises four functional moieties in a single molecular structure,including a lysosome-targeting group for cell recognition,a lysosomal enzyme-cleaved scaffold for site-specific activation,thiocarbamate as the H_(2)S precursor,and a switchable fluorophore for concurrent selfreporting of H_(2)S release and senescence imaging.Lyso-FH_(2)S-Gal exhibited remarkable response selectivity,sustained H_(2)S release,and 141-fold fluorescence enhancement.In cellular models,Lyso-FH_(2) S-Gal preferentially enriched in senescent cells over nonsenescent cells,and alleviated the levels of SASP and reactive oxygen species(ROS)in senescent cells,while remaining inert in nonsenescent cells.More impressively,it efficiently inhibited the SASPmediated crosstalk between senescent cells and surrounding nonsenescent cells,thereby preventing senescence propagation.This work offers a useful molecular tool with the hope for controlled intervention of senescence-related important biological processes.
文摘In vivo fluorescence imaging in the second near-infrared (NIR-II)window (1000-1700 nm)has been emerging as a new powerful imaging technique and demonstrated tre- mendous potential in life sciences and biomedical applications,given its advances in reducing photon scattering,light absorption,and autofluorescence [1,2].In particular,extensive efforts have been made to produce various NIR-II probes with different emission wavelengths for multiplexing purposes,as practical applications typically require concurrent detection of multiple analytes.