To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study wa...To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study was conducted on a 1.35 k W magnetically shielded Hall thruster with a xenon propellant. Different magnetic field lines were chosen, and corresponding tangentially matched channel walls were manufactured and utilized. The results demonstrate that high performance and a qualified anti-sputtering effect cannot be achieved simultaneously. When the magnetic field lines that match the chamfered wall have a strength at the channel centerline of less than 12% of the maximum field strength, the channel wall can be adequately protected from ion sputtering. When the magnetic field lines have a strength ratio of 12%–20%, the thruster performance is high. These findings provide the first significant quantitative design reference for the match between the magnetic field line and chamfered channel wall in magnetically shielded Hall thrusters.展开更多
In this study,a high specific impulse Hall thruster,HEP-140 MF,having a high discharge voltage,was used to accelerate ions.We aimed to obtain a high specific impulse and an acceleration zone moving downstream toward t...In this study,a high specific impulse Hall thruster,HEP-140 MF,having a high discharge voltage,was used to accelerate ions.We aimed to obtain a high specific impulse and an acceleration zone moving downstream toward the channel exit to reduce wall sputtering erosion of the walls of the discharge channel,hence ensuring an enhanced lifetime.To study the lifetime characteristics of the high specific impulse Hall thruster,a life test was performed on the HEP-140 MF thruster for the first time,and performance parameters,such as thrust,specific impulse,and efficiency,were measured.Changes in the performance parameters and evolutions in the surface profiles of the discharge channel wall were summarized.The reasons contributing to these changes during the life test were analyzed.Moreover,the accelerated life test method was validated on the HEP-140 MF.展开更多
Hollow cathodes are widely used as electron sources and neutralizers in ion and Hall electric propulsion.Special applications such as commercial aerospace and gravitational wave detection require hollow cathodes with ...Hollow cathodes are widely used as electron sources and neutralizers in ion and Hall electric propulsion.Special applications such as commercial aerospace and gravitational wave detection require hollow cathodes with a very wide discharge current range.In this paper,a heater is used to compensate for the temperature drop of the emitter at low current.The self-sustained current can be extended from 0.6 to 0.1 A with a small discharge oscillation and ion energy when the flow rate is constant.This is also beneficial for long-life operation.However,when the discharge current is high(>1 A),heating can cause discharge oscillation,discharge voltage and ion energy to increase,f urther,combined with a rapid decline of pressure inside the cathode and an increase in the temperature in the cathode orifice plate,electron emission in die orifice and outside the orifice increases and the plasma density in the orifice decreases.This leads to a change in the cathode discharge mode.展开更多
基金funded by National Natural Science Foundation of China (Nos. 52076054 and 51736003)Civil Aerospace Technology Pre-research Project (No. D03015)Defense Industrial Technology Development Program (No. JCKY2019603B005)。
文摘To date, the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied. Hence, an experimental study was conducted on a 1.35 k W magnetically shielded Hall thruster with a xenon propellant. Different magnetic field lines were chosen, and corresponding tangentially matched channel walls were manufactured and utilized. The results demonstrate that high performance and a qualified anti-sputtering effect cannot be achieved simultaneously. When the magnetic field lines that match the chamfered wall have a strength at the channel centerline of less than 12% of the maximum field strength, the channel wall can be adequately protected from ion sputtering. When the magnetic field lines have a strength ratio of 12%–20%, the thruster performance is high. These findings provide the first significant quantitative design reference for the match between the magnetic field line and chamfered channel wall in magnetically shielded Hall thrusters.
基金supported by Space Advance Research program (No. D010509)National Natural Science Foundation of China (No. 51806011)National Defense Pre-Research Foundation of China (No. JSZL2016203C006)。
文摘In this study,a high specific impulse Hall thruster,HEP-140 MF,having a high discharge voltage,was used to accelerate ions.We aimed to obtain a high specific impulse and an acceleration zone moving downstream toward the channel exit to reduce wall sputtering erosion of the walls of the discharge channel,hence ensuring an enhanced lifetime.To study the lifetime characteristics of the high specific impulse Hall thruster,a life test was performed on the HEP-140 MF thruster for the first time,and performance parameters,such as thrust,specific impulse,and efficiency,were measured.Changes in the performance parameters and evolutions in the surface profiles of the discharge channel wall were summarized.The reasons contributing to these changes during the life test were analyzed.Moreover,the accelerated life test method was validated on the HEP-140 MF.
文摘Hollow cathodes are widely used as electron sources and neutralizers in ion and Hall electric propulsion.Special applications such as commercial aerospace and gravitational wave detection require hollow cathodes with a very wide discharge current range.In this paper,a heater is used to compensate for the temperature drop of the emitter at low current.The self-sustained current can be extended from 0.6 to 0.1 A with a small discharge oscillation and ion energy when the flow rate is constant.This is also beneficial for long-life operation.However,when the discharge current is high(>1 A),heating can cause discharge oscillation,discharge voltage and ion energy to increase,f urther,combined with a rapid decline of pressure inside the cathode and an increase in the temperature in the cathode orifice plate,electron emission in die orifice and outside the orifice increases and the plasma density in the orifice decreases.This leads to a change in the cathode discharge mode.