期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Anti-Overturning Fully Symmetrical Triboelectric Nanogenerator Based on an Elliptic Cylindrical Structure for All-Weather Blue Energy Harvesting 被引量:2
1
作者 Dujuan Tan Qixuan Zeng +6 位作者 Xue Wang Songlei Yuan yanlin luo Xiaofang Zhang Liming Tan Chenguo Hu Guanlin Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期342-353,共12页
Triboelectric nanogenerators(TENGs) have shown promising potential for large-scale blue energy harvesting. However, the lack of reasonable designs has largely hindered TENG from harvesting energy from both rough and t... Triboelectric nanogenerators(TENGs) have shown promising potential for large-scale blue energy harvesting. However, the lack of reasonable designs has largely hindered TENG from harvesting energy from both rough and tranquil seas. Herein, a fully symmetrical triboelectric nanogenerator based on an elliptical cylindrical structure(EC-TENG) is proposed for all-weather blue energy harvesting. The novel elliptical cylindrical shell provides a unique selfstability, high sensitivity to wave triggering, and most importantly, an anti-overturning capability for the EC-TENG. Moreover, benefiting from its internal symmetrical design, the EC-TENG can produce energy normally, even if it was overturned under a rude oscillation in the rough seas, which distinguishes this work from previous reported TENGs. The working mechanism and output performance are systematically studied. The as-fabricated EC-TENG is capable of lighting 400 light-emitting diodes and driving small electronics. More than that, an automatic monitoring system powered by the EC-TENG can also monitor the water level in real-time and provide an alarm if necessary. This work presents an innovative and reliable approach toward all-weather wave energy harvesting in actual marine environments. 展开更多
关键词 ANTI-OVERTURNING Fully symmetrical Elliptic cylindrical Triboelectric nanogenerator Wave energy
下载PDF
The suppression of cervical cancer ferroptosis by macrophages:The attenuation of ALOX15 in cancer cells by macrophages-derived exosomes 被引量:3
2
作者 yanlin luo Yibing Chen +9 位作者 Huan Jin Benxin Hou Hongsheng Li Xiang Li Lingfeng Liu Yuan Zhou Yonghua Li Yong Sang Song Quentin Liu Zhengzhi Zou 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第6期2645-2662,共18页
Induction of cancer cell ferroptosis has been proposed as a potential treatment in several cancer types.Tumor-associated macrophages(TAMs)play a key role in promoting tumor malignant progression and therapy resistance... Induction of cancer cell ferroptosis has been proposed as a potential treatment in several cancer types.Tumor-associated macrophages(TAMs)play a key role in promoting tumor malignant progression and therapy resistance.However,the roles and mechanisms of TAMs in regulating tumor ferroptosis is still unexplored and remains enigmatic.This study shows ferroptosis inducers has shown therapeutic outcomes in cervical cancer in vitro and in vivo.TAMs have been found to suppress cervical cancer cells ferroptosis.Mechanistically,macrophage-derived miRNA-660-5p packaged into exosomes are transported into cancer cells.In cancer cells,miRNA-660-5p attenuates ALOX15 expression to inhibit ferroptosis.Moreover,the upregulation of miRNA-660-5p in macrophages depends on autocrine IL4/IL13-activated STAT6 pathway.Importantly,in clinical cervical cancer cases,ALOX15 is negatively associated with macrophages infiltration,which also raises the possibility that macrophages reduce ALOX15 levels in cervical cancer.Moreover,both univariate and multivariate Cox analyses show ALOX15 expression is independent prognostic factor and positively associated with good prognosis in cervical cancer.Altogether,this study reveals the potential utility of targeting TAMs in ferroptosis-based treatment and ALOX15 as prognosis indicators for cervical cancer. 展开更多
关键词 Cervical cancer Tumor-associated macrophage ALOX15 Ferroptosis EXOSOME miRNA-660-5p Macrophages infiltration STAT6
原文传递
Multitask Learning with Multiscale Residual Attention for Brain Tumor Segmentation and Classification
3
作者 Gaoxiang Li Xiao Hui +1 位作者 Wenjing Li yanlin luo 《Machine Intelligence Research》 EI CSCD 2023年第6期897-908,共12页
Automatic segmentation and classification of brain tumors are of great importance to clinical treatment.However,they are challenging due to the varied and small morphology of the tumors.In this paper,we propose a mult... Automatic segmentation and classification of brain tumors are of great importance to clinical treatment.However,they are challenging due to the varied and small morphology of the tumors.In this paper,we propose a multitask multiscale residual attention network(MMRAN)to simultaneously solve the problem of accurately segmenting and classifying brain tumors.The proposed MMRAN is based on U-Net,and a parallel branch is added at the end of the encoder as the classification network.First,we propose a novel multiscale residual attention module(MRAM)that can aggregate contextual features and combine channel attention and spatial attention better and add it to the shared parameter layer of MMRAN.Second,we propose a method of dynamic weight training that can improve model performance while minimizing the need for multiple experiments to determine the optimal weights for each task.Finally,prior knowledge of brain tumors is added to the postprocessing of segmented images to further improve the segmentation accuracy.We evaluated MMRAN on a brain tumor data set containing meningioma,glioma,and pituitary tumors.In terms of segmentation performance,our method achieves Dice,Hausdorff distance(HD),mean intersection over union(MIoU),and mean pixel accuracy(MPA)values of 80.03%,6.649 mm,84.38%,and 89.41%,respectively.In terms of classification performance,our method achieves accuracy,recall,precision,and F1-score of 89.87%,90.44%,88.56%,and 89.49%,respectively.Compared with other networks,MMRAN performs better in segmentation and classification,which significantly aids medical professionals in brain tumor management.The code and data set are available at https://github.com/linkenfaqiu/MMRAN. 展开更多
关键词 Brain tumor segmentation and classification multitask learning multiscale residual attention module(MRAM) dynamic weight training prior knowledge
原文传递
cPKCγ Deficiency Exacerbates Autophagy Impairment and Hyperphosphorylated Tau Buildup through the AMPK/mTOR Pathway in Mice with Type 1 Diabetes Mellitus 被引量:1
4
作者 Jiayin Zheng Yue Wang +6 位作者 Yue Liu Song Han Ying Zhang yanlin luo Yi Yan Junfa Li Li Zhao 《Neuroscience Bulletin》 SCIE CAS CSCD 2022年第10期1153-1169,共17页
Type 1 diabetes mellitus(T1DM)-induced cognitive dysfunction is common,but its underlying mechanisms are still poorly understood.In this study,we found that knockout of conventional protein kinase C(cPKC)γsignificant... Type 1 diabetes mellitus(T1DM)-induced cognitive dysfunction is common,but its underlying mechanisms are still poorly understood.In this study,we found that knockout of conventional protein kinase C(cPKC)γsignificantly increased the phosphorylation of Tau at Ser214 and neurofibrillary tangles,but did not affect the activities of GSK-3βand PP2A in the hippocampal neurons of T1DM mice.cPKCγdeficiency significantly decreased the level of autophagy in the hippocampal neurons of T1DM mice.Activation of autophagy greatly alleviated the cognitive impairment induced by cPKCγdeficiency in T1DM mice.Moreover,cPKCγdeficiency reduced the AMPK phosphorylation levels and increased the phosphorylation levels of mTOR in vivo and in vitro.The high glucose-induced Tau phosphorylation at Ser214 was further increased by the autophagy inhibitor and was significantly decreased by an mTOR inhibitor.In conclusion,these results indicated that cPKCγpromotes autophagy through the AMPK/mTOR signaling pathway,thus reducing the level of phosphorylated Tau at Ser214 and neurofibrillary tangles. 展开更多
关键词 Conventional protein kinase C(cPKC)γ Tau Phosphorylated Tau AUTOPHAGY AMPK/mTOR signaling pathway
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部