Time is an essential reference system for recording objects,events,and processes in the field of geosciences.There are currently various time references,such as solar calendar,geological time,and regional calendar,to ...Time is an essential reference system for recording objects,events,and processes in the field of geosciences.There are currently various time references,such as solar calendar,geological time,and regional calendar,to represent the knowledge in different domains and regions,which subsequently entails a time conversion process required to interpret temporal information under different time references.However,the current time conversion method is limited by the application scope of existing time ontologies(e.g.,“Jurassic”is a period in geological ontology,but a point value in calendar ontology)and the reliance on experience in conversion processes.These issues restrict accurate and efficient calculation of temporal information across different time references.To address these issues,this paper proposes a Unified Time Framework(UTF)in the geosciences knowledge system.According to a systematic time element parsing from massive time references,the proposed UTF designs an independent time root node to get rid of irrelevant nodes when accessing different time types and to adapt to the time expression of different geoscience disciplines.Furthermore,this UTF carries out several designs:to ensure the accuracy of time expressions by designing quantitative relationship definitions;to enable time calculations across different time elements by designing unified time nodes and structures,and to link to the required external ontologies by designing adequate interfaces.By comparing the time conversion methods,the experiment proves the UTF greatly supports accurate and efficient calculation of temporal information across different time references in SPARQL queries.Moreover,it shows a higher and more stable performance of temporal information queries than the time conversion method.With the advent of the Big Data era in the geosciences,the UTF can be used more widely to discover new geosciences knowledge across different time references.展开更多
Geoscience knowledge graph(GKG)can organize various geoscience knowledge into a machine understandable and computable semantic network and is an effective way to organize geoscience knowledge and provide knowledge-rel...Geoscience knowledge graph(GKG)can organize various geoscience knowledge into a machine understandable and computable semantic network and is an effective way to organize geoscience knowledge and provide knowledge-related services.As a result,it has gained significant attention and become a frontier in geoscience.Geoscience knowledge is derived from many disciplines and has complex spatiotemporal features and relationships of multiple scales,granularities,and dimensions.Therefore,establishing a GKG representation model conforming to the characteristics of geoscience knowledge is the basis and premise for the construction and application of GKG.However,existing knowledge graph representation models leverage fixed tuples that are limited in fully representing complex spatiotemporal features and relationships.To address this issue,this paper first systematically analyzes the categorization and spatiotemporal features and relationships of geoscience knowledge.On this basis,an adaptive representation model for GKG is proposed by considering the complex spatiotemporal features and relationships.Under the constraint of a unified spatiotemporal ontology,this model adopts different tuples to adaptively represent different types of geoscience knowledge according to their spatiotemporal correlation.This model can efficiently represent geoscience knowledge,thereby avoiding the isolation of the spatiotemporal feature representation and improving the accuracy and efficiency of geoscience knowledge retrieval.It can further enable the alignment,transformation,computation,and reasoning of spatiotemporal information through a spatiotemporal ontology.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.42050101 and 42101467)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23100101).
文摘Time is an essential reference system for recording objects,events,and processes in the field of geosciences.There are currently various time references,such as solar calendar,geological time,and regional calendar,to represent the knowledge in different domains and regions,which subsequently entails a time conversion process required to interpret temporal information under different time references.However,the current time conversion method is limited by the application scope of existing time ontologies(e.g.,“Jurassic”is a period in geological ontology,but a point value in calendar ontology)and the reliance on experience in conversion processes.These issues restrict accurate and efficient calculation of temporal information across different time references.To address these issues,this paper proposes a Unified Time Framework(UTF)in the geosciences knowledge system.According to a systematic time element parsing from massive time references,the proposed UTF designs an independent time root node to get rid of irrelevant nodes when accessing different time types and to adapt to the time expression of different geoscience disciplines.Furthermore,this UTF carries out several designs:to ensure the accuracy of time expressions by designing quantitative relationship definitions;to enable time calculations across different time elements by designing unified time nodes and structures,and to link to the required external ontologies by designing adequate interfaces.By comparing the time conversion methods,the experiment proves the UTF greatly supports accurate and efficient calculation of temporal information across different time references in SPARQL queries.Moreover,it shows a higher and more stable performance of temporal information queries than the time conversion method.With the advent of the Big Data era in the geosciences,the UTF can be used more widely to discover new geosciences knowledge across different time references.
基金supported by the National Natural Science Foundation of China(Grant No.42050101)the National Key Research and Development Program of China(Grant Nos.2022YFB3904200&2021YFB00903)supported by the International Big Science Program of Deeptime Digital Earth(DDE)。
文摘Geoscience knowledge graph(GKG)can organize various geoscience knowledge into a machine understandable and computable semantic network and is an effective way to organize geoscience knowledge and provide knowledge-related services.As a result,it has gained significant attention and become a frontier in geoscience.Geoscience knowledge is derived from many disciplines and has complex spatiotemporal features and relationships of multiple scales,granularities,and dimensions.Therefore,establishing a GKG representation model conforming to the characteristics of geoscience knowledge is the basis and premise for the construction and application of GKG.However,existing knowledge graph representation models leverage fixed tuples that are limited in fully representing complex spatiotemporal features and relationships.To address this issue,this paper first systematically analyzes the categorization and spatiotemporal features and relationships of geoscience knowledge.On this basis,an adaptive representation model for GKG is proposed by considering the complex spatiotemporal features and relationships.Under the constraint of a unified spatiotemporal ontology,this model adopts different tuples to adaptively represent different types of geoscience knowledge according to their spatiotemporal correlation.This model can efficiently represent geoscience knowledge,thereby avoiding the isolation of the spatiotemporal feature representation and improving the accuracy and efficiency of geoscience knowledge retrieval.It can further enable the alignment,transformation,computation,and reasoning of spatiotemporal information through a spatiotemporal ontology.