We give the Fundamental Theorem for Hopf modules in the category of Yetter-Drinfeld modules , where L is a quasitriangular weak Hopf algebra with a bijective antipode. We also show that H* has a right H-Hopf mod...We give the Fundamental Theorem for Hopf modules in the category of Yetter-Drinfeld modules , where L is a quasitriangular weak Hopf algebra with a bijective antipode. We also show that H* has a right H-Hopf module structure in the Yetter-Drinfeld category. As an application we deduce the existence and uniqueness of right integral from it.展开更多
文摘We give the Fundamental Theorem for Hopf modules in the category of Yetter-Drinfeld modules , where L is a quasitriangular weak Hopf algebra with a bijective antipode. We also show that H* has a right H-Hopf module structure in the Yetter-Drinfeld category. As an application we deduce the existence and uniqueness of right integral from it.