Retinal neovascularization(RNV),a typical pathological manifestation involved in most neovascular diseases,causes retinal detachment,vision loss,and ultimately irreversible blindness.Repeated intravitreal injections o...Retinal neovascularization(RNV),a typical pathological manifestation involved in most neovascular diseases,causes retinal detachment,vision loss,and ultimately irreversible blindness.Repeated intravitreal injections of anti-VEGF drugs were developed against RNV,with limitations of incomplete responses and adverse effects.Therefore,a new treatment with a better curative effect and more prolonged dosage is demanding.Here,we induced macrophage polarization to anti-inflammatory M2 phenotype by inhibiting cGAS-STING signaling with an antagonist C176,appreciating the role of cGAS-STING signaling in the retina in pro-inflammatory M1 polarization.C176-loaded and phosphatidylserine-modified dendritic mesoporous silica nanoparticles were constructed and examined by a single intravitreal injection.The biosafe nanoparticles were phagocytosed by retinal macrophages through a phosphatidylserine-mediated“eat me”signal,which persistently release C176 to suppress STING signaling and thereby promote macrophage M2 polarization specifically.A single dosage can effectively alleviate pathological angiogenesis phenotypes in murine oxygen-induced retinopathy models.In conclusion,these C176-loaded nanoparticles with enhanced cell uptake and long-lasting STING inhibition effects might serve as a promising way for treating RNV.展开更多
基金supported by Key Program of the National Natural Science Foundation of China(82330032)Natural Science Foundation of China(82201195)+1 种基金National Natural Science Foundation Regional Innovation and Development Joint Fund(U20A20386)Key Research and Development Program of Zhejiang Province(2024C03204).
文摘Retinal neovascularization(RNV),a typical pathological manifestation involved in most neovascular diseases,causes retinal detachment,vision loss,and ultimately irreversible blindness.Repeated intravitreal injections of anti-VEGF drugs were developed against RNV,with limitations of incomplete responses and adverse effects.Therefore,a new treatment with a better curative effect and more prolonged dosage is demanding.Here,we induced macrophage polarization to anti-inflammatory M2 phenotype by inhibiting cGAS-STING signaling with an antagonist C176,appreciating the role of cGAS-STING signaling in the retina in pro-inflammatory M1 polarization.C176-loaded and phosphatidylserine-modified dendritic mesoporous silica nanoparticles were constructed and examined by a single intravitreal injection.The biosafe nanoparticles were phagocytosed by retinal macrophages through a phosphatidylserine-mediated“eat me”signal,which persistently release C176 to suppress STING signaling and thereby promote macrophage M2 polarization specifically.A single dosage can effectively alleviate pathological angiogenesis phenotypes in murine oxygen-induced retinopathy models.In conclusion,these C176-loaded nanoparticles with enhanced cell uptake and long-lasting STING inhibition effects might serve as a promising way for treating RNV.