期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The enhanced X-ray Timing and Polarimetry mission—eXTP 被引量:18
1
作者 ShuangNan Zhang Andrea Santangelo +149 位作者 Marco Feroci YuPeng Xu FangJun Lu Yong Chen Hua Feng Shu Zhang Sφren Brandt Margarita Hernanz Luca Baldini Enrico Bozzo Riccardo Campana Alessandra De Rosa YongWei Dong Yuri Evangelista Vladimir Karas Norbert Meidinger Aline Meuris Kirpal Nandra Teng Pan Giovanni Pareschi Piotr Orleanski QiuShi Huang Stephane Schanne Giorgia Sironi Daniele Spiga Jiri Svoboda Gianpiero Tagliaferri Christoph Tenzer Andrea Vacchi Silvia Zane Dave Walton ZhanShan Wang Berend Winter Xin Wu Jean J.M.in't Zand Mahdi Ahangarianabhari Giovanni Ambrosi Filippo Ambrosino Marco Barbera Stefano Basso Jörg Bayer Ronaldo Bellazzini Pierluigi Bellutti Bruna Bertucci Giuseppe Bertuccio Giacomo Borghi XueLei Cao Franck Cadoux Francesco Ceraudo TianXiang Chen Yu Peng Chen Jerome Chevenez Marta Civitani Wei Cui WeiWei Cui Thomas Dauser Ettore Del Monte Sergio Di Cosimo Sebastian Diebold Victor Doroshenko Michal Dovciak YuanYuan Du Lorenzo Ducci QingMei Fan yannick favre Fabio Fuschino JoséLuis Ga'lvez Min Gao MingYu Ge Olivier Gevin Marco Grassi QuanYing Gu YuDong Gu DaWei Han Bin Hong Wei Hu Long Ji ShuMei Jia WeiChun Jiang Thomas Kennedy Ingo Kreykenbohm Irfan Kuvvetli Claudio Labanti Luca Latronico Gang Li MaoShun Li Xian Li Wei Li ZhengWei Li Olivier Limousin HongWei Liu XiaoJing Liu Bo Lu Tao Luo Daniele Macera Piero Malcovati Adrian Martindale Malgorzata Michalska Bin Meng Massimo Minuti Alfredo Morbidini Fabio Muleri Stephane Paltani Emanuele Perinati Antonino Picciotto Claudio Piemonte JinLu Qu Alexandre Rachevski Irina Rashevskaya Jerome Rodriguez Thomas Schanz ZhengXiang Shen LiZhi Sheng JiangBo Song LiMing Song Carmelo Sgro Liang Sun Ying Tan Phil Uttley Bo Wang DianLong Wang GuoFeng Wang Juan Wang LangPing Wang YuSa Wang Anna L.Watts XiangYang Wen Jörn Wilms ShaoLin Xiong JiaWei Yang Sheng Yang YanJi Yang Nian Yu WenDa Zhang Gianluigi Zampa Nicola Zampa Andrzej A.Zdziarski AiMei Zhang ChengMo Zhang Fan Zhang Long Zhang Tong Zhang Yi Zhang XiaoLi Zhang ZiLiang Zhang BaoSheng Zhao ShiJie Zheng Yu Peng Zhou Nicola Zorzi J.Frans Zwart 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2019年第2期3-27,共25页
In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The m... In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment. 展开更多
关键词 X-ray instrumentation X-ray polarimetry X-ray timing space mission:eXTP
原文传递
Feasibility study of cosmic-ray componentsmeasurement by using a scintillating fiber tracker in space
2
作者 Jun-jing Wang Xin Wu +6 位作者 Ming Xu Chiara Perrina Philipp Azzarello Franck Cadoux yannick favre Daniel La Marra Bo-bing Wu 《Radiation Detection Technology and Methods》 CSCD 2021年第3期389-403,共15页
Purpose The application of traditional silicon strip detectors in space experiments often suffers from heat and power consumption limitations when a large area has to be instrumented.Recently,a scintillating fiber det... Purpose The application of traditional silicon strip detectors in space experiments often suffers from heat and power consumption limitations when a large area has to be instrumented.Recently,a scintillating fiber detector with SiPM readout was proposed and adopted by ground high-energy experiments.Its excellent performance in track measurement and mechanical flexibility makes it a prospective candidate for large-area tracking detectors in the next-generation space experiments.This paper mainly focuses on its performance in cosmic-ray charge measurement.Methods A fast Geant4 simulation for a single tracker module was developed and compared with the beam test results.The non-uniformity of the detector response was studied.Moreover,a full tracker simulation using a variety of typical cosmic ray nuclei was implemented.The performance of a fiber tracker with multiple layers was evaluated.Results and conclusion The comparison between the simulation results and the beam test data of protons and helium nuclei shows a good agreement.The non-uniformity study reveals the strong dependence of the detector signal on the position and inclination angle of the incident particles.Then,a corresponding correction algorithm was developed and applied in the following data analysis.The preliminary result shows that the charge measurement capability of the fiber tracker composed of 9 XY superlayers is comparable to that of the AMS-02 inner tracker,which consists of 7 layers of double-sided silicon micro-strip ladders.This paper discusses the feasibility of using fiber trackers to measure cosmic ray charges and provide a guide for the optimization of detector design. 展开更多
关键词 Fiber tracker SIPM Charge measurement COSMIC-RAY SIMULATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部