Unraveling the distribution of metabolites in traditional Chinese medicine(TCM)provides direct indications for understanding their regulatory and functional basis,which is of paramount significance for better utilizat...Unraveling the distribution of metabolites in traditional Chinese medicine(TCM)provides direct indications for understanding their regulatory and functional basis,which is of paramount significance for better utilization and quality control of medicinal plants[1].Recently,imaging techniques such as near-infrared spectroscopy,Raman spectroscopy,and mass spectrometry(MS)were explored to reveal the spatial context of component accumulation and localization[2,3].展开更多
A new combined reactor with Hg/Ar electrodeless ultraviolet(EDUV)activated by DBD for 3,4-dichlorodiphenyl ether abatement is presented.The effect of specific input energy and feeding gas component on 3,4-dichlorodiph...A new combined reactor with Hg/Ar electrodeless ultraviolet(EDUV)activated by DBD for 3,4-dichlorodiphenyl ether abatement is presented.The effect of specific input energy and feeding gas component on 3,4-dichlorodiphenyl ether removal efficiency has been explored.Compared with a single DBD system,this new combined process performed a significant promotion on 3,4-dichlorodiphenyl ether abatement.Experiment results verified that active oxygen clearly contributed to the synergistic activity of DBD-EDUV system.Results of emission spectra showed that UV radiation of 253.7 nm could be detected in the DBD-EDUV system.Further,the products of DBD-EDUV process were analyzed via gas chromatographymass spectrometer(GC-MS)to reveal involved decomposition mechanism.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.:81773874).
文摘Unraveling the distribution of metabolites in traditional Chinese medicine(TCM)provides direct indications for understanding their regulatory and functional basis,which is of paramount significance for better utilization and quality control of medicinal plants[1].Recently,imaging techniques such as near-infrared spectroscopy,Raman spectroscopy,and mass spectrometry(MS)were explored to reveal the spatial context of component accumulation and localization[2,3].
基金National Natural Science Foundation of China(No.21577023)the Special Research Project on Causes and Control Technology of Air Pollution(No.2017YFC0212905)the science and technology innovation action project supported by the Science and Technology Commission of Shanghai Municipality(No.18DZ1202605)。
文摘A new combined reactor with Hg/Ar electrodeless ultraviolet(EDUV)activated by DBD for 3,4-dichlorodiphenyl ether abatement is presented.The effect of specific input energy and feeding gas component on 3,4-dichlorodiphenyl ether removal efficiency has been explored.Compared with a single DBD system,this new combined process performed a significant promotion on 3,4-dichlorodiphenyl ether abatement.Experiment results verified that active oxygen clearly contributed to the synergistic activity of DBD-EDUV system.Results of emission spectra showed that UV radiation of 253.7 nm could be detected in the DBD-EDUV system.Further,the products of DBD-EDUV process were analyzed via gas chromatographymass spectrometer(GC-MS)to reveal involved decomposition mechanism.