For harsh real-world service settings,it is essential to build corrosion-resistant,diverse,and effective microwave absorbers.Herein,we successfully prepared a 3D NiAl-layered double hydroxide/carbon nanofibers(NiAl-LD...For harsh real-world service settings,it is essential to build corrosion-resistant,diverse,and effective microwave absorbers.Herein,we successfully prepared a 3D NiAl-layered double hydroxide/carbon nanofibers(NiAl-LDH/CNFs)composite material as an anticorrosive microwave absorber assisted by an atomic layer deposition(ALD)method.The size,coating thickness,and content of NiAl-LDH can be readily adjusted by changing the ALD cycling numbers.The optimized NiAl-LDH/CNFs demonstrates prominent microwave absorbing properties including the strongest reflection loss of–55.65 dB and the widest effective absorption bandwidth of 4.80 GHz with only 15 wt%loading.The reasons for performance improvement are the cooperative effect of interfacial polarization loss,conduction loss,and three-dimensional porous structure.Moreover,due to the synergistic effects between the excellent impermeability of CNFs and the trapping ability of NiAl-LDH for chloride ions,NiAl-LDH/CNFs exhibits strong corrosion resistances under acidic,neutral,and alkaline conditions.NiAl-LDH/CNFs should be a potential candidate to simultaneously use for microwave absorption and corrosion resistance,and this work provides a certain guiding significance for designing microwave absorbers that satisfy the corrosion resistance.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.22068010,22278101,and 22168016)the Finance Science and Technology Project of Hainan Province(Grant Nos.ZDYF2020009)the Natural Science Foundation of Hainan Province(Grant Nos.2019RC142 and 519QN176).
文摘For harsh real-world service settings,it is essential to build corrosion-resistant,diverse,and effective microwave absorbers.Herein,we successfully prepared a 3D NiAl-layered double hydroxide/carbon nanofibers(NiAl-LDH/CNFs)composite material as an anticorrosive microwave absorber assisted by an atomic layer deposition(ALD)method.The size,coating thickness,and content of NiAl-LDH can be readily adjusted by changing the ALD cycling numbers.The optimized NiAl-LDH/CNFs demonstrates prominent microwave absorbing properties including the strongest reflection loss of–55.65 dB and the widest effective absorption bandwidth of 4.80 GHz with only 15 wt%loading.The reasons for performance improvement are the cooperative effect of interfacial polarization loss,conduction loss,and three-dimensional porous structure.Moreover,due to the synergistic effects between the excellent impermeability of CNFs and the trapping ability of NiAl-LDH for chloride ions,NiAl-LDH/CNFs exhibits strong corrosion resistances under acidic,neutral,and alkaline conditions.NiAl-LDH/CNFs should be a potential candidate to simultaneously use for microwave absorption and corrosion resistance,and this work provides a certain guiding significance for designing microwave absorbers that satisfy the corrosion resistance.