Reference-frame-independent quantum key distribution(RFI-QKD)can allow a quantum key distribution system to obtain the ideal key rate and transmission distance without reference system calibration,which has attracted ...Reference-frame-independent quantum key distribution(RFI-QKD)can allow a quantum key distribution system to obtain the ideal key rate and transmission distance without reference system calibration,which has attracted much attention.Here,we propose an RFI-QKD protocol based on wavelength division multiplexing(WDM)considering finite-key analysis and crosstalk.The finite-key bound for RFI-QKD with decoy states is derived under the crosstalk of WDM.The resulting secret key rate of RFI-QKD,which is more rigorous,is obtained.Simulation results reveal that the secret key rate of RFI-QKD based on WDM is affected by the multiplexing channel number,as well as crosstalk between adjacent channels.展开更多
Quantum key distribution(QKD) generates information-theoretical secure keys between two parties based on the physical laws of quantum mechanics. The phase-matching(PM) QKD protocol allows the key rate to break the qua...Quantum key distribution(QKD) generates information-theoretical secure keys between two parties based on the physical laws of quantum mechanics. The phase-matching(PM) QKD protocol allows the key rate to break the quantum channel secret key capacity limit without quantum repeaters, and the security of the protocol is demonstrated by using equivalent entanglement. In this paper, the wavelength division multiplexing(WDM) technique is applied to the PM-QKD protocol considering the effect of crosstalk noise on the secret key rate. The performance of PM-QKD protocol based on WDM with the influence of adjacent classical channels and Raman scattering is analyzed by numerical simulations to maximize the total secret key rate of the QKD, providing a reference for future implementations of QKD based on WDM techniques.展开更多
Quantum key distribution(QKD) generates information-theoretical secret keys between two parties based on the physical laws of quantum mechanics. Following the advancement in quantum communication networks, it becomes ...Quantum key distribution(QKD) generates information-theoretical secret keys between two parties based on the physical laws of quantum mechanics. Following the advancement in quantum communication networks, it becomes feasible and economical to combine QKD with classical optical communication through the same fiber using dense wavelength division multiplexing(DWDM) technology. This study proposes a detailed scheme of TF-QKD protocol with DWDM technology and analyzes its performance, considering the influence of quantum channel number and adjacent quantum crosstalk on the secret key rates. The simulation results show that the scheme further increases the secret key rate of TF-QKD and its variants. Therefore, this scheme provides a method for improving the secret key rate for practical quantum networks.展开更多
We propose a fully symmetrical QKD system that enables quantum states to be prepared and measured simultaneously without compromising system performance.Over a 25.6 km fiber channel,we demonstrate point-to-point QKD o...We propose a fully symmetrical QKD system that enables quantum states to be prepared and measured simultaneously without compromising system performance.Over a 25.6 km fiber channel,we demonstrate point-to-point QKD operations with asymmetric Mach–Zehnder interferometer modules.Two interference visibilities of above99%indicate that the proposed system has excellent stability.Consequently,the scheme not only improves the feasibility of distributing secret keys,but also enables QKD closer to more practical applications.展开更多
Reference frame independent and measurement device independent quantum key distribution(RFI-MDI-QKD)has the advantages of being immune to detector side loopholes and misalignment of the reference frame.However,several...Reference frame independent and measurement device independent quantum key distribution(RFI-MDI-QKD)has the advantages of being immune to detector side loopholes and misalignment of the reference frame.However,several former related research works are based on the unrealistic assumption of perfect source preparation.In this paper,we merge a loss-tolerant method into RFI-MDI-QKD to consider source flaws into key rate estimation and compare it with quantum coin method.Based on a reliable experimental scheme,the joint influence of both source flaws and reference frame misalignment is discussed with consideration of the finite-key effect.The results show that the loss-tolerant RFI-MDI-QKD protocol can reach longer key rate performance while considering the existence of source flaws in a real-world implementation.展开更多
Accurate drug delivery to the lesion has been deliberated for several decades,but one important phenomenon is usually neglected that the immune system can prevent smooth transportation of nanomedicine.Although injecti...Accurate drug delivery to the lesion has been deliberated for several decades,but one important phenomenon is usually neglected that the immune system can prevent smooth transportation of nanomedicine.Although injection would reduce first-pass effect,macrophages in the blood can still recognize and phagocytose nanomedicine.Here we show that a lubricated nanocontainer,which is prepared based on polyelectrolytes and mesoporous silica nanoparticles,can accurately target muscarinic bioreceptor while escaping from the identification of macrophages.Through in vitro and in vivo studies,this nanocontainer,combining both immune escape and bioreceptor targeting,has greatly improved the drug bioavailability.Additionally,this nanocontainer shows good biocompatibility,and the targeted heart tissues and other important metabolic organs,such as liver and kidney,keep physiological structures and functions without the detection of side effects.Furthermore,the mechanism of immune escape for the developed nanocontainer has been investigated by lubrication test and molecular simulation.We anticipate that our study will establish a new perspective on the achievement of immune escape-based targeted drug delivery,which can provide a fundamental approach for the design of related biomaterials.展开更多
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.2019XD-A02)the State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications(BUPT)(Grant No.IPOC2021ZT10)BUPT Innovation and Entrepreneurship Support Program(Grant No.2021-YC-A315).
文摘Reference-frame-independent quantum key distribution(RFI-QKD)can allow a quantum key distribution system to obtain the ideal key rate and transmission distance without reference system calibration,which has attracted much attention.Here,we propose an RFI-QKD protocol based on wavelength division multiplexing(WDM)considering finite-key analysis and crosstalk.The finite-key bound for RFI-QKD with decoy states is derived under the crosstalk of WDM.The resulting secret key rate of RFI-QKD,which is more rigorous,is obtained.Simulation results reveal that the secret key rate of RFI-QKD based on WDM is affected by the multiplexing channel number,as well as crosstalk between adjacent channels.
基金supported by the State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (Grant No. IPOC2021ZT10)the National Natural Science Foundation of China (Grant No. 11904333)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 2019XDA02)BUPT Innovation and Entrepreneurship Support Program (Grant No. 2022-YC-T051)。
文摘Quantum key distribution(QKD) generates information-theoretical secure keys between two parties based on the physical laws of quantum mechanics. The phase-matching(PM) QKD protocol allows the key rate to break the quantum channel secret key capacity limit without quantum repeaters, and the security of the protocol is demonstrated by using equivalent entanglement. In this paper, the wavelength division multiplexing(WDM) technique is applied to the PM-QKD protocol considering the effect of crosstalk noise on the secret key rate. The performance of PM-QKD protocol based on WDM with the influence of adjacent classical channels and Raman scattering is analyzed by numerical simulations to maximize the total secret key rate of the QKD, providing a reference for future implementations of QKD based on WDM techniques.
基金supported by the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPOC2021ZT10)the National Natural Science Foundation of China (Grant No. 11904333)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02)BUPT Innovation and Entrepreneurship Support Program (Grant No. 2022YC-T051)。
文摘Quantum key distribution(QKD) generates information-theoretical secret keys between two parties based on the physical laws of quantum mechanics. Following the advancement in quantum communication networks, it becomes feasible and economical to combine QKD with classical optical communication through the same fiber using dense wavelength division multiplexing(DWDM) technology. This study proposes a detailed scheme of TF-QKD protocol with DWDM technology and analyzes its performance, considering the influence of quantum channel number and adjacent quantum crosstalk on the secret key rates. The simulation results show that the scheme further increases the secret key rate of TF-QKD and its variants. Therefore, this scheme provides a method for improving the secret key rate for practical quantum networks.
基金Supported by the Fundamental Research Funds for the Central Universities(Grant No.2019XD-A02)the State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications(Grant No.IPO2019ZT06)。
文摘We propose a fully symmetrical QKD system that enables quantum states to be prepared and measured simultaneously without compromising system performance.Over a 25.6 km fiber channel,we demonstrate point-to-point QKD operations with asymmetric Mach–Zehnder interferometer modules.Two interference visibilities of above99%indicate that the proposed system has excellent stability.Consequently,the scheme not only improves the feasibility of distributing secret keys,but also enables QKD closer to more practical applications.
基金supported by the State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)(No.IPOC2021ZT10)the National Natural Science Foundation of China(No.11904333)the Fundamental Research Funds for the Central Universities(No.2019XD-A02)。
文摘Reference frame independent and measurement device independent quantum key distribution(RFI-MDI-QKD)has the advantages of being immune to detector side loopholes and misalignment of the reference frame.However,several former related research works are based on the unrealistic assumption of perfect source preparation.In this paper,we merge a loss-tolerant method into RFI-MDI-QKD to consider source flaws into key rate estimation and compare it with quantum coin method.Based on a reliable experimental scheme,the joint influence of both source flaws and reference frame misalignment is discussed with consideration of the finite-key effect.The results show that the loss-tolerant RFI-MDI-QKD protocol can reach longer key rate performance while considering the existence of source flaws in a real-world implementation.
基金supported by National Natural Science Foundation of China(52022043)Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program(20191080593)+3 种基金Capital’s Funds for Health Improvement and Research(2020-2Z-40810)Precision Medicine Foundation,Tsinghua University,China(10001020107 and 10001020120)Shanghai Collaborative Innovation Center for Translational Medicine(TM201802)Science and Technology Commission of Shanghai Municipality Grant(17140902500).
文摘Accurate drug delivery to the lesion has been deliberated for several decades,but one important phenomenon is usually neglected that the immune system can prevent smooth transportation of nanomedicine.Although injection would reduce first-pass effect,macrophages in the blood can still recognize and phagocytose nanomedicine.Here we show that a lubricated nanocontainer,which is prepared based on polyelectrolytes and mesoporous silica nanoparticles,can accurately target muscarinic bioreceptor while escaping from the identification of macrophages.Through in vitro and in vivo studies,this nanocontainer,combining both immune escape and bioreceptor targeting,has greatly improved the drug bioavailability.Additionally,this nanocontainer shows good biocompatibility,and the targeted heart tissues and other important metabolic organs,such as liver and kidney,keep physiological structures and functions without the detection of side effects.Furthermore,the mechanism of immune escape for the developed nanocontainer has been investigated by lubrication test and molecular simulation.We anticipate that our study will establish a new perspective on the achievement of immune escape-based targeted drug delivery,which can provide a fundamental approach for the design of related biomaterials.