Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturin...Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.展开更多
The Bayesian inversion method is a stochastic approach based on the Bayesian theory.With the development of sampling algorithms and computer technologies,the Bayesian inversion method has been widely used in geophysic...The Bayesian inversion method is a stochastic approach based on the Bayesian theory.With the development of sampling algorithms and computer technologies,the Bayesian inversion method has been widely used in geophysical inversion problems.In this study,we conduct inversion experiments using crosshole seismic travel-time data to examine the characteristics and performance of the stochastic Bayesian inversion based on the Markov chain Monte Carlo sampling scheme and the traditional deterministic inversion with Tikhonov regularization.Velocity structures with two different spatial variations are considered,one with a chessboard pattern and the other with an interface mimicking the Mohorovicicdiscontinuity(Moho).Inversions are carried out with different scenarios of model discretization and source–receiver configurations.Results show that the Bayesian method yields more robust single-model estimations than the deterministic method,with smaller model errors.In addition,the Bayesian method provides the posterior probabilistic distribution function of the model space,which can help us evaluate the quality of the inversion result.展开更多
基金National Natural Science Foundation of China (52305358)the Fundamental Research Funds for the Central Universities (2023ZYGXZR061)+3 种基金Guangdong Basic and Applied Basic Research Foundation (2022A1515010304)Science and Technology Program of Guangzhou (202201010362)Young Elite Scientists Sponsorship Program by CAST . (2023QNRC001)Young Talent Support Project of Guangzhou (QT-2023-001)
文摘Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.
基金supported by the National Natural Science Foundation of China (grant nos. 41930103 and 41674052)
文摘The Bayesian inversion method is a stochastic approach based on the Bayesian theory.With the development of sampling algorithms and computer technologies,the Bayesian inversion method has been widely used in geophysical inversion problems.In this study,we conduct inversion experiments using crosshole seismic travel-time data to examine the characteristics and performance of the stochastic Bayesian inversion based on the Markov chain Monte Carlo sampling scheme and the traditional deterministic inversion with Tikhonov regularization.Velocity structures with two different spatial variations are considered,one with a chessboard pattern and the other with an interface mimicking the Mohorovicicdiscontinuity(Moho).Inversions are carried out with different scenarios of model discretization and source–receiver configurations.Results show that the Bayesian method yields more robust single-model estimations than the deterministic method,with smaller model errors.In addition,the Bayesian method provides the posterior probabilistic distribution function of the model space,which can help us evaluate the quality of the inversion result.