Recently,the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid(KSL)[Chin.Phys.Lett.38047502(2021)].In the present work,we firstly propose an effective spin Hamil...Recently,the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid(KSL)[Chin.Phys.Lett.38047502(2021)].In the present work,we firstly propose an effective spin Hamiltonian consistent with the symmetry group of the crystal structure.Then we apply classical Monte Carlo simulations to preliminarily study the model and establish a phase diagram.When approaching to the low temperature limit,several magnetic long range orders are observed,including the stripe,the zigzag,the antiferromagnetic(AFM),the ferromagnetic(FM),the incommensurate spiral(IS),the multi-Q,and the 120°ones.We further calculate the thermodynamic properties of the system,such as the temperature dependence of the magnetic susceptibility and the heat capacity.The ordering transition temperatures reflected in the two quantities agree with each other.For most interaction regions,the system is magnetically more susceptible in the ab-plane than in the c-direction.The stripe phase is special,where the susceptibility is fairly isotropic in the whole temperature region.These features provide useful information to understand the magnetic properties of related materials.展开更多
The Kitaev spin liquid(KSL) system has attracted tremendous attention in recent years because of its fundamental significance in condensed matter physics and promising applications in fault-tolerant topological quantu...The Kitaev spin liquid(KSL) system has attracted tremendous attention in recent years because of its fundamental significance in condensed matter physics and promising applications in fault-tolerant topological quantum computation.Material realization of such a system remains a major challenge in the field due to the unusual configuration of anisotropic spin interactions,though great effort has been made before.Here we reveal that rare-earth chalcohalides REChX(RE=rare earth;Ch=O,S,Se,Te;X=F,Cl,Br,I) can serve as a family of KSL candidates.Most family members have the typical SmSI-type structure with a high symmetry of R3m,and rare-earth magnetic ions form an undistorted honeycomb lattice.The strong spin-orbit coupling of 4f electrons intrinsically offers anisotropic spin interactions as required by the Kitaev model.We have grown the crystals of YbOCl and synthesized the polycrystals of SmSI,ErOF,HoOF and DyOF,and made careful structural characterizations.We carry out magnetic and heat capacity measurements down to 1.8 K and find no obvious magnetic transition in all the samples but DyOF.The van der Waals interlayer coupling highlights the true two-dimensionality of the family which is vital for the exact realization of Abelian/non-Abelian anyons,and the graphene-like feature will be a prominent advantage for developing miniaturized devices.The family is expected to act as an inspiring material platform for the exploration of KSL physics.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300504)the National Natural Science Foundation of China (Grant Nos. U1932215, 11774419, 11574392, and 11974421)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100)the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Renmin University of China (Grant No. 19XNLG11)the support from Users with Excellence Program of Hefei Science CenterHigh Magnetic Field Facility,CAS
文摘Recently,the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid(KSL)[Chin.Phys.Lett.38047502(2021)].In the present work,we firstly propose an effective spin Hamiltonian consistent with the symmetry group of the crystal structure.Then we apply classical Monte Carlo simulations to preliminarily study the model and establish a phase diagram.When approaching to the low temperature limit,several magnetic long range orders are observed,including the stripe,the zigzag,the antiferromagnetic(AFM),the ferromagnetic(FM),the incommensurate spiral(IS),the multi-Q,and the 120°ones.We further calculate the thermodynamic properties of the system,such as the temperature dependence of the magnetic susceptibility and the heat capacity.The ordering transition temperatures reflected in the two quantities agree with each other.For most interaction regions,the system is magnetically more susceptible in the ab-plane than in the c-direction.The stripe phase is special,where the susceptibility is fairly isotropic in the whole temperature region.These features provide useful information to understand the magnetic properties of related materials.
基金the National Key Research and Development Program of China(Grant Nos.2017YFA0302904 and 2016YFA0300504)the National Natural Science Founation of China(Grant Nos.U1932215 and 11774419)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33010100)。
文摘The Kitaev spin liquid(KSL) system has attracted tremendous attention in recent years because of its fundamental significance in condensed matter physics and promising applications in fault-tolerant topological quantum computation.Material realization of such a system remains a major challenge in the field due to the unusual configuration of anisotropic spin interactions,though great effort has been made before.Here we reveal that rare-earth chalcohalides REChX(RE=rare earth;Ch=O,S,Se,Te;X=F,Cl,Br,I) can serve as a family of KSL candidates.Most family members have the typical SmSI-type structure with a high symmetry of R3m,and rare-earth magnetic ions form an undistorted honeycomb lattice.The strong spin-orbit coupling of 4f electrons intrinsically offers anisotropic spin interactions as required by the Kitaev model.We have grown the crystals of YbOCl and synthesized the polycrystals of SmSI,ErOF,HoOF and DyOF,and made careful structural characterizations.We carry out magnetic and heat capacity measurements down to 1.8 K and find no obvious magnetic transition in all the samples but DyOF.The van der Waals interlayer coupling highlights the true two-dimensionality of the family which is vital for the exact realization of Abelian/non-Abelian anyons,and the graphene-like feature will be a prominent advantage for developing miniaturized devices.The family is expected to act as an inspiring material platform for the exploration of KSL physics.