Nowadays,tungsten oxides,as a typical transition metal oxide,are widely and intensively investigated owing to their excellent material properties and device properties.Controlling oxygen defi ciency in tungsten oxides...Nowadays,tungsten oxides,as a typical transition metal oxide,are widely and intensively investigated owing to their excellent material properties and device properties.Controlling oxygen defi ciency in tungsten oxides is typically the key to enhance their performances for a variety of critical technological applications.With a gradual increase of oxygen defi ciency,various non-stoichiometric tungsten oxides can be formed by re-adjustment of the atomic arrangement,which exhibits superior performances than their traditional stoichiometric counterparts.This review mainly focuses on the recent advances in oxygen-defi cient tungsten oxides from the point of atomic structures,including the forming mechanism of non-stoichiometric tungsten oxides and the superiority of these oxygen-defi cient tungsten oxides in energy-related devices.Finally,the challenge and perspective of oxygen-defi cient tungsten oxides are also discussed.展开更多
基金supported by the National Natural Science Foundation of China(No.61904080)the Macao Young Scholars Program of China(No.AM2020005)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110994).
文摘Nowadays,tungsten oxides,as a typical transition metal oxide,are widely and intensively investigated owing to their excellent material properties and device properties.Controlling oxygen defi ciency in tungsten oxides is typically the key to enhance their performances for a variety of critical technological applications.With a gradual increase of oxygen defi ciency,various non-stoichiometric tungsten oxides can be formed by re-adjustment of the atomic arrangement,which exhibits superior performances than their traditional stoichiometric counterparts.This review mainly focuses on the recent advances in oxygen-defi cient tungsten oxides from the point of atomic structures,including the forming mechanism of non-stoichiometric tungsten oxides and the superiority of these oxygen-defi cient tungsten oxides in energy-related devices.Finally,the challenge and perspective of oxygen-defi cient tungsten oxides are also discussed.