期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Preliminary results of environmental monitoring of the natural gas hydrate production test in the South China Sea 被引量:22
1
作者 Jian-liang Ye Xu-wen Qin +8 位作者 Hai-jun Qiu Qian-yong Liang Yi-fei Dong Jian-gong Wei Hai-long Lu Jing-an Lu yao-hong shi Chao Zhong Zhen Xia 《China Geology》 2018年第2期202-209,共8页
Natural gas hydrate (NGH)is considered as one of the new clean energy sources of the 21st century with the highest potential.The environmental issues of NGH production have attracted the close attention of scientists ... Natural gas hydrate (NGH)is considered as one of the new clean energy sources of the 21st century with the highest potential.The environmental issues of NGH production have attracted the close attention of scientists in various countries.From May 10 to July 9,2017,the first offshore NGH production test in the South China Sea (SCS)was conducted by the China Geological Survey.In addition,environmental security has also been effectively guaranteed via a comprehensive environmental monitoring system built during the NGH production test.The monitoring system considered sea-surface atmosphere methane and carbon dioxide concentrations,dissolved methane in the sea water column,and the seafloor physical oceanography and marine chemistry environment.The whole process was monitored via multiple means, in multiple layers,in all domains,and in real time.After the production test,an environmental investigation was promptly conducted to evaluate the environmental impact of the NGH production test. The monitoring results showed that the dissolved methane concentration in seawater and the near-seabed environment characteristics after the test were consistent with the background values,indicating that the NGH production test did not cause environmental problems such as methane leakage. 展开更多
关键词 SOUTH China Sea Natural gas HYDRATE Production test METHANE LEAKAGE Environmental momtoring
下载PDF
Multi-factor sensitivity analysis on the stability of submarine hydrate-bearing slope 被引量:12
2
作者 Liang Kong Zhen-fei Zhang +3 位作者 Qing-meng Yuan Qian-yong Liang yao-hong shi Jin-qing Lin 《China Geology》 2018年第3期367-373,共7页
There are many factors affecting the instability of the submarine hydrate-bearing slope (SHBS),and the interaction with hydrate is very complicated.In this paper,the mechanical mechanism of the static liquefaction and... There are many factors affecting the instability of the submarine hydrate-bearing slope (SHBS),and the interaction with hydrate is very complicated.In this paper,the mechanical mechanism of the static liquefaction and instability of submarine slope caused by the dissociation of natural gas hydrate (NGH) resulting in the rapid increase of pore pressure of gas hydrate-bearing sediments (GHBS) and the decrease of effective stress are analyzed based on the time series and type of SHBS.Then,taking the typical submarine slope in the northern South China Sea as an example,four important factors affecting the stability of SHBS are selected,such as the degree of hydrate dissociation,the depth of hydrate burial,the thickness of hydrate,and the depth of seawater.According to the principle of orthogonal method,25 orthogonal test schemes with 4 factors and 5 levels are designed and the safety factors of submarine slope stability of each scheme are calculated by using the strength reduction finite element method.By means of the orthogonal design range analysis and the variance analysis,sensitivity of influential factors on stability of SHBS are obtained.The results show that the degree of hydrate dissociation is the most sensitive,followed by hydrate burial depth,the thickness of hydrate and the depth of seawater.Finally,the concept of gas hydrate critical burial depth is put forward according to the influence law of gas hydrate burial depth,and the numerical simulation for specific submarine slope is carried out,which indicates the existence of critical burial depth. 展开更多
关键词 SUBMARINE SLOPE Gas HYDRATE Strength reduction finite element method Instability mechanism Sensitivity analysis Critical BURIAL depth
下载PDF
Stability analysis of submarine slopes in the area of the test production of gas hydrate in the South China Sea 被引量:8
3
作者 yao-hong shi Qian-yong Liang +3 位作者 Jiang-pin Yang Qing-meng Yuan Xue-min Wu Liang Kong 《China Geology》 2019年第3期276-286,共11页
In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test pr... In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test production of gas hydrate in the northern part of the South China Sea. The strength reduction finite element method (SRFEM) was introduced to the stability analysis of submarine slopes for the safety of the test production. Two schemes were designed to determine the physical and mechanical parameters of four target wells. Through the division of the hydrate dissociation region and the design of four working conditions, the range and degree of hydrate dissociation at different stages during the test production were simulated. Based on the software ABAQUS, 37 FEM models of SHBS were set up to analyze and assess the stability of the submarine slopes in the area of the test production. Necessary information such as safety factors, deformation, and displacement were obtained at different stages and under different working conditions. According to the calculation results, the submarine slope area is stable before the test production, and the safety factors almost remains the same during and after the test production. All these indicate that the test production has no obvious influence on the area of the test production and the submarine slopes in the area are stable during and after the test production. 展开更多
关键词 GAS HYDRATE test PRODUCTION Strength reduction finite element method SUBMARINE slope Stability GAS HYDRATE exploration engineering South China Sea China
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部