Gallium Nitride (GaN) is an important material for the development of novel short-wave-length photonicdevices or high-frequency, high-power electronic devices. Ion implantation/irradiation was proved to be an effectiv...Gallium Nitride (GaN) is an important material for the development of novel short-wave-length photonicdevices or high-frequency, high-power electronic devices. Ion implantation/irradiation was proved to be an effective method to modify the physical properties of the material. In the present work, we studied the dependence of damage accumulation on irradiation dose and temperature and the corresponding effects on photolumines cence character of the material. Specimens of GaN (n-type doping, (0001) on axis) were irradiated with展开更多
The study of damage evolution in silicon carbide bombarded with energetic helium ions is important for the use of this material in future fusion reactors. Heavier inert gas atoms like Ne and Xe have similar behavior o...The study of damage evolution in silicon carbide bombarded with energetic helium ions is important for the use of this material in future fusion reactors. Heavier inert gas atoms like Ne and Xe have similar behavior of diffusion and clustering with helium, and the comparison of damage accumulation behavior between energetic helium and heavier inert gas ions can reveal important aspects of underlying mechanisms. As an extension of展开更多
文摘Gallium Nitride (GaN) is an important material for the development of novel short-wave-length photonicdevices or high-frequency, high-power electronic devices. Ion implantation/irradiation was proved to be an effective method to modify the physical properties of the material. In the present work, we studied the dependence of damage accumulation on irradiation dose and temperature and the corresponding effects on photolumines cence character of the material. Specimens of GaN (n-type doping, (0001) on axis) were irradiated with
文摘The study of damage evolution in silicon carbide bombarded with energetic helium ions is important for the use of this material in future fusion reactors. Heavier inert gas atoms like Ne and Xe have similar behavior of diffusion and clustering with helium, and the comparison of damage accumulation behavior between energetic helium and heavier inert gas ions can reveal important aspects of underlying mechanisms. As an extension of